已知函數(shù)(a為實(shí)常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實(shí)數(shù)a的取值范圍.
(1)當(dāng)時(shí),,當(dāng),;
(2)當(dāng)時(shí),的最小值為1,相應(yīng)的x值為1;當(dāng)時(shí),
的最小值為,相應(yīng)的x值為;當(dāng)時(shí),的最小值為,
相應(yīng)的x值為.
(3)。
【解析】
試題分析:(1)當(dāng)時(shí),,當(dāng),,
故函數(shù)在上是增函數(shù). 4分
(2),當(dāng),.
若,在上非負(fù)(僅當(dāng),x=1時(shí),),故函數(shù)在上是增函數(shù),此時(shí). 6分
若,當(dāng)時(shí), ;當(dāng)時(shí),,此時(shí)
是減函數(shù); 當(dāng)時(shí),,此時(shí)是增函數(shù).故
.
若,在上非正(僅當(dāng),x=e時(shí),),故函數(shù)在上是減函數(shù),此時(shí). 8分
綜上可知,當(dāng)時(shí),的最小值為1,相應(yīng)的x值為1;當(dāng)時(shí),
的最小值為,相應(yīng)的x值為;當(dāng)時(shí),的最小值為,
相應(yīng)的x值為. 10分
(3)不等式,可化為.
∵, ∴且等號(hào)不能同時(shí)取,所以,即,
因而() 12分
令(),又, 14分
當(dāng)時(shí),,,
從而(僅當(dāng)x=1時(shí)取等號(hào)),所以在上為增函數(shù),
故的最小值為,所以a的取值范圍是. 6分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值;二次函數(shù)的性質(zhì);二次含參不等式的解法。
點(diǎn)評(píng):(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,一定要先求函數(shù)的定義域;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,實(shí)質(zhì)上就是求導(dǎo)數(shù)大于零或小于零的解集,這樣問題就轉(zhuǎn)化為解不等式的問題,尤其是含參不等式的解法要注意分類討論。二次含參不等式主要討論的地方有:開口方向,兩根的大小和判別式?。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:荊門市2008屆高三數(shù)學(xué)試題(理)模擬訓(xùn)練題 題型:022
有如下四個(gè)命題:
①已知函數(shù)(b為實(shí)常數(shù),e是自然對(duì)數(shù)的底數(shù)),若f(x)在區(qū)間[1,+∞)內(nèi)為減函數(shù),則b的取值范圍是(0,+∞).
②已知點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)y=sinx(-π<x<0)圖象上的兩個(gè)不同點(diǎn),則一定有;
③已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R,滿足:f(ab)=af(b)+bf(a),f(2)=2,an=(n∈N*),則數(shù)列{an}一定為等差數(shù)列
④已知O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:.則P點(diǎn)的軌跡一定通過△ABC的重心其中正確命題的序號(hào)為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)
已知函數(shù)(a為實(shí)常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)
已知函數(shù)(a為實(shí)常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)
已知函數(shù)(a為實(shí)常數(shù)).
(1)若,求證:函數(shù)在(1,+.∞)上是增函數(shù);
(2)求函數(shù)在[1,e]上的最小值及相應(yīng)的值;
(3)若存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com