已知三次函數(shù)f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b為實常數(shù).
(1)若a=3,b=3時,求函數(shù)f(x)的極大、極小值;
(2)設(shè)函數(shù)g(x)=f′(x)+7,其中f′(x)是f(x)的導函數(shù),若g(x)的導函數(shù)為g′(x),g′(0)>0,g(x)與x軸有且僅有一個公共點,求
g(1)
g′(0)
的最小值.
(1)f(x)=x3+
3
2
x2-6x+1
,∴f'(x)=3x2+3x-6=3(x-1)(x+2),
令f'(x)=0,∴x1=-2,x2=1,
x(-∞,-2)-2(-2,1)1(1,+∞)
f'(x)+0-0+
f(x)極大值極小值
f極大值=f(-2)=11,f極小值=f(1)=-
5
2

(2)由于g(x)=ax2+bx-6+7=ax2+bx+1(a≠0),
則g'(x)=2ax+b,g'(0)=b>0,
又由g(x)與x軸有且僅有一個公共點,則b2-4a=0,
g(1)
g′(0)
=
a+b+1
b
=
a+1
b
+1=
b2
4
+1
b
+1=
b
4
+
1
b
+1≥2
b
4
1
b
+1=2
,
(當且僅當
b
4
=
1
b
,即b=2時,等號成立)
(
g(1)
g′(0)
)min=2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線y=x3在點P(1,1)處的切線與直線ax-by-2=0互相垂直,則
a
b
=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3-3x2+1,則在曲線y=f(x)的切線中,斜率最小的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)在區(qū)間(a,b)內(nèi)可導,其導函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)有( 。
A.一個極大值,一個極小值
B.一個極大值,兩個極小值
C.兩個極大值,一個極小值
D.兩個極大值,兩個極小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=x3-x在點(1,0)處的切線與直線x+ay=1垂直,則實數(shù)a的值為( 。
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=
3x
+1,則
lim
△x→0
f(1-△x)-f(1)
△x
的值為( 。
A.-
1
3
B.
1
3
C.
2
3
D.0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=
x4
4
-
x3
3
的極值點為(  )
A.0B.-1C.0或1D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1
2
(b-1)x2+cx.
(1)當b=-3,c=3時,求f(x)的極值;
(2)若f(x)在(-∞,x1),(x2,+∞)上遞增,在(x1,x2)上遞減,x2-x1>1,求證:b2>2(b+2c);
(3)在(2)的條件下,若t<x1,試比較t2+bt+c與x1的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)f(x)=
x2+a
x+1
(a∈R)

(1)若f(x)在點(1,f(1))處的切線斜率為
1
2
,求實數(shù)a的值;
(2)若f(x)在x=1取得極值,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案