已知等比數(shù)列{an}中,a1+a2=20,a3+a4=120,求公比q及S6
考點(diǎn):等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等比數(shù)列的通項公式求解.
解答: 解:∵等比數(shù)列{an}中,a1+a2=20,a3+a4=120,
a1+a1q=20
a1q2+a1q3=120
,
解得
a1=4
6
-4
q=
6
.或
a1=-4
6
-4
q=-
6

當(dāng)
a1=4
6
-4
q=
6
時.S6=
(4
6
-4)[1-(
6
)6]
1-
6
=860.
當(dāng)
a1=-4
6
-4
q=-
6
時,S6=
(-4
6
-4)[1-(-
6
)6]
1+
6
=860.
∴q=
6
,S6=860或q=-
6
,S
6
=860
點(diǎn)評:本題考查等比數(shù)列的公比及前6項的求法,是基礎(chǔ)題,解題時要注意等比數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),直線l經(jīng)過點(diǎn)P(2,2),傾斜角為
π
3

(1)寫出圓C的普通方程和直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={3,4,5},B={a∈N*|
b
6-a
∈N,b∈N*},且A=B,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x),g(x)的定義域分別為D1,D2,且D1?D2.若對于任意x∈D1,都有g(shù)(x)=f(x),則稱g(x)為f(x)在D2上的一個延拓函數(shù).給定f(x)=x2-1(0<x≤1).
(Ⅰ)若h(x)是f(x)在[-1,1]上的延拓函數(shù),且h(x)為奇函數(shù),求h(x)的解析式;
(Ⅱ)設(shè)g(x)為f(x)在(0,+∞)上的任意一個延拓函數(shù),且y=
g(x)
x
 是(0,+∞)上的單調(diào)函數(shù).
(。┡袛嗪瘮(shù)y=
g(x)
x
在(0,1]上的單調(diào)性,并加以證明;
(ⅱ)設(shè)s>0,t>0,證明:g(s+t)>g(s)+g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體的三個相鄰面的面積分別是a,b,c,這個長方體的頂點(diǎn)都在同一個球面上,求這個球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=e-2x+1在點(diǎn)(0,2)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式滿足|x-3|+|x+1|>6,則解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2x2+3y2+6z2=a,x+y+z=a-2,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(0,1)且與直線2x-y=0垂直的直線方程的一般式是
 

查看答案和解析>>

同步練習(xí)冊答案