(本題滿分12分)
已知函數(shù)上是減函數(shù),在上是增函數(shù),且兩個(gè)零點(diǎn)滿足,求二次函數(shù)的解析式。
由已知得:對(duì)稱軸,所以………3分
,又,的兩個(gè)零點(diǎn)
所以,是方程的兩個(gè)根……………………4分
…………………………………………6分
所以………………8分
………………………………………………………………11分
……………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù),
(1)當(dāng)時(shí),在 [ – 1,1 ] 上的最大值為,求的最小值;
(2)對(duì)于任意的,總有,求a的取值范圍;
(3)若當(dāng)時(shí),記,令a = 1,求證:成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a、b、c是實(shí)數(shù),函數(shù),,當(dāng)時(shí),
(1)證明:;
(2)證明:當(dāng)時(shí),;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)滿足,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)R,0).(1)當(dāng)0<時(shí),R)的最大值為,求的最小值.(2)如果[0,1]時(shí),總有||.試求的取值范圍.(3)令,當(dāng)時(shí),的所有整數(shù)值的個(gè)數(shù)為,求證數(shù)列的前項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知y=2x2+kx+3在(-∞,3]上是減函數(shù),在[3,+∞)上是增函數(shù),則k的值是( 。
A.-6B.6C.-12D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)=ax2+bx(a≠0),且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實(shí)數(shù)x稱為函數(shù)f(x)的“不動(dòng)點(diǎn)”,若函數(shù)f(x)有且僅有一個(gè)不動(dòng)點(diǎn).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+kx2在(0,4)上是增函數(shù),求實(shí)數(shù)k的取值范圍;
(3)是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域?yàn)閇3m,3n]?若存在,請(qǐng)求出m,n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=x2+bx+b,其最小值為0,則b的值為(  )
A.0B.4C.0或4D.0或-4

查看答案和解析>>

同步練習(xí)冊(cè)答案