17.如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA=AD,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD.

分析 (1)欲證MN∥平面PAD,根據(jù)直線與平面平行的判定定理可知只需證MN與平面PAD內(nèi)一直線平行即可,設(shè)PD的中點(diǎn)為E,連接AE、NE,易證AMNE是平行四邊形,則MN∥AE,而AE?平面PAD,NM?平面PAD,滿足定理所需條件;
(2)欲證平面PMC⊥平面PCD,根據(jù)面面垂直的判定定理可知在平面PMC內(nèi)一直線與平面PCD垂直,而AE⊥PD,CD⊥AE,PD∩CD=D,根據(jù)線面垂直的判定定理可知AE⊥平面PCD,而MN∥AE,則MN⊥平面PCD,又MN?平面PMC,滿足定理所需條件.

解答 證明:(1)設(shè)PD的中點(diǎn)為E,連接AE、NE,
由N為PC的中點(diǎn)知EN平行且等于$\frac{1}{2}$DC,
又ABCD是矩形,∴DC平行且等于AB,∴EN平行且等于$\frac{1}{2}$AB
又M是AB的中點(diǎn),∴EN平行且等于AM,
∴AMNE是平行四邊形
∴MN∥AE,而AE?平面PAD,NM?平面PAD,
∴MN∥平面PAD;
(2)∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD?平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD
∴CD⊥AE,∵PD∩CD=D,∴AE⊥平面PCD,
∵M(jìn)N∥AE,∴MN⊥平面PCD,
又MN?平面PMC,
∴平面PMC⊥平面PCD.

點(diǎn)評(píng) 本題主要考查平面與平面垂直的判定,以及線面平行的判定,綜合考查了學(xué)生的空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在平面平直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,在頂點(diǎn)為A(-2,0),過點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)已知點(diǎn)P為AD的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由;
(3)若過點(diǎn)O作直線l的平行線交橢圓C于點(diǎn)M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知兩點(diǎn)A(0,1),B(4,3),則線段AB的垂直平分線方程是(  )
A.x-2y+2=0B.2x+y-6=0C.x+2y-2=0D.2x-y+6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱錐S-ABC中,底面ABC為直角三角形,且∠ABC=90°,SA⊥底面ABC,且SA=AB,點(diǎn)M是SB的中點(diǎn),AN⊥SC且交SC于點(diǎn)N.
(1)求證:SC⊥平面AMN;
(2)當(dāng)AB=BC時(shí),求二面角N-MA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(理)如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=∠A1AC=60°,平面AA1CC1⊥平面ABCD.
(1)證明:BD⊥AA1;
(2)求二面角D-AA1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.化簡(jiǎn):$\frac{A_n^m}{{A_{n-1}^{m-1}}}$=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=2ln(x-1)-(x-1)2
(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)+x2-3x-a=0在區(qū)間[2,4]內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若三點(diǎn) A(-2,12),B(1,3),C(m,-6)共線,則m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.?dāng)?shù)列{$\frac{1}{{2}^{n}}$+1}的前n項(xiàng)和公式Sn=( 。
A.$\frac{1}{{2}^{n}}$B.n+$\frac{1}{{2}^{n}}$C.n-$\frac{1}{{2}^{n}}$+1D.n2-2n-$\frac{1}{{2}^{n}}$+1

查看答案和解析>>

同步練習(xí)冊(cè)答案