12.已知tan60°=m,則cos120゜的值是(  )
A.$\frac{1}{{\sqrt{1+{m^2}}}}$B.$\frac{1-{m}^{2}}{1+{m}^{2}}$C.$\frac{m}{{\sqrt{1+{m^2}}}}$D.-$\frac{m}{{\sqrt{1+{m^2}}}}$

分析 利用同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式求得cos120゜的值.

解答 解:tan60°=m,則cos120°=cos260°-sin260°=$\frac{{cos}^{2}60°{-sin}^{2}60°}{{cos}^{2}60°{+sin}^{2}60°}$=$\frac{1{-tan}^{2}60°}{1{+tan}^{2}60°}$=$\frac{1{-m}^{2}}{1{+m}^{2}}$,
故選:B.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|x2-4x+3=0},B={x|mx+1=0,m∈R},A∩B=B,求實(shí)數(shù)m的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.原命題“若xy=1,則x,y互為倒數(shù)”,則(  )
A.逆命題與逆否命題真,否命題假B.逆命題假,否命題和逆否命題真
C.逆命題和否命題真,逆否命題假D.逆命題、否命題、逆否命題都真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.隨機(jī)變量ξ服從正態(tài)分布N(50,σ2),若P(ξ<40)=0.3,則P(40<ξ<60)=0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F(-2$\sqrt{3}$,0),上下頂點(diǎn)分別為A,B,已知△AFB是等邊三角形.
(1)求橢圓C的方程;
(2)直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M,證明:直線OM的斜率與直線l的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,正方體ABCD-A1B1C1D1的棱長為a
(1)求證A1C⊥平面BC1D
(2)求四面體A1BDC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知離散型隨機(jī)變量ξ的分布列為
ξ102030
P0.6a$\frac{1}{4}$-$\frac{a}{2}$
則D(3ξ-3)等于( 。
A.42B.135C.402D.405

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若$\overrightarrow a=({2,1}),\overrightarrow b=({-1,1}),({2\overrightarrow a+\overrightarrow b})∥({\overrightarrow a-m\overrightarrow b})$,則m=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z滿足(1+i)•z=2-i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=( 。
A.$\frac{1-3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{-1-3i}{2}$D.$\frac{-1+3i}{2}$

查看答案和解析>>

同步練習(xí)冊答案