如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=
3
,AA1=2,E是BB1的中點(diǎn),且CE交BC1于點(diǎn)P,點(diǎn)Q在線段BC上,CQ=2QB.
(1)證明:CC1∥平面A1PQ;
(2)若BC⊥平面A1PQ,求二面角A1-QE-P的大。
考點(diǎn):二面角的平面角及求法,直線與平面平行的判定
專(zhuān)題:空間角
分析:(1)根據(jù)線面平行的判定定理即可證明:CC1∥平面A1PQ;
(2)建立空間直角坐標(biāo)系,求對(duì)應(yīng)向量的法向量,利用向量法即可求二面角A1-QE-P的大。
解答: 解:(1)在直三棱柱ABC-A1B1C1中,△BEP≌△C1CP,且E是BB1的中點(diǎn),
CP
PE
=
2
1
=
CQ
BQ
,
∴PQ∥EB∥C1C,
又PQ?平面A1PQ,C1C?平面A1PQ
∴CC1∥平面A1PQ;
(2)由(1)知PQ∥C1C,
∴PQ∥AA1,
∴BC⊥平面A1PQA,
∴BC⊥AQ,
又∠BAC=90°,CQ=2QB.
∴AC=
6

分別以A為坐標(biāo)原點(diǎn),以AB,AC,AA1為x,y,z軸建立空間直角坐標(biāo)系如圖,
則A1(0,0,2),E(
3
,0,1),B(
3
,0,0),C(0,
6
,0
),Q(
2
3
3
6
3
,0
),
QE
=(
3
3
,-
6
6
,1)
A1A
=(
3
,0,-1)
,
設(shè)平面A1QE的法向量為
m
=(x,y,z)
,
m
QE
=0
m
A1E
=0
,即
x=
2
y
z=2x
,令y=1,
m
=(1,2
2
3
)
,
又BC⊥AQ,A1A⊥AQ,
∴AQ⊥平面BCC1B1,
∴取平面BCC1B1的法向量為
AQ
=(
2
3
3
6
3
,0
),
∴二面角A1-QE-P的余弦值為
AQ
m
|
AQ
|•|
m
|
=
2
2
,
即二面角A1-QE-P的大小為
π
4
點(diǎn)評(píng):本題主要考查線面平行的判斷,以及二面角的求解,利用空間向量法是解決本題的關(guān)鍵,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:
1-2a
x-2
<a(a>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=
π
6
,a=25
2
,b=50
2
,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖E、F、G、H分別是空間四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn).
(1)求證:四邊形EFGH為平行四邊形.
(2)若AC與BD滿足什么條件時(shí),四邊形EFGH為菱形,試證明你的結(jié)論.
(3)求證:AC∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的3個(gè)紅球和3個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(Ⅰ)求取出的4個(gè)球中沒(méi)有紅球的概率;
(Ⅱ)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(Ⅲ)設(shè)ξ為取出的4個(gè)球中紅球的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一同學(xué)在電腦中打出如下圖若干個(gè)圓(○表示空心圓,●表示實(shí)心圓)○●○○●○○○●○○○○●○○○○○●○…問(wèn):前120個(gè)圓中有
 
 個(gè)實(shí)心圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:1=12,1+2+1=22,1+2+3+2+1=32,…由此猜想第n個(gè)等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)樣本a,3,5,7的平均數(shù)是4,則這個(gè)樣本的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在大于零的常數(shù)T和非零常數(shù)S,使得當(dāng)x取定義域中的每一個(gè)值時(shí),都有f(x+T)=f(x)+S,那么f(x)稱(chēng)為“類(lèi)周期函數(shù)”,T叫做“類(lèi)周期”.已知g(x)是定義在R上以1為周期的函數(shù),h(x)=g(x)+x在[3,4]上的值域?yàn)閇-2,5].現(xiàn)有以下結(jié)論:
①h(x)是以1為“類(lèi)周期“的“類(lèi)周期函數(shù)“;
②h(x-3)=h(x)+3;
③h(x)在[0,1]上的值域?yàn)閇-5,2];
④函數(shù)y=h(x)的圖象向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度后,所得圖象與h(x)重合.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案