函數(shù)y=-x3+48x-3的極大值為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先求函數(shù)的導(dǎo)函數(shù)y′,再解不等式y(tǒng)′>0和y′<0得函數(shù)的單調(diào)區(qū)間,進(jìn)而由極值的定義求得函數(shù)的極值點(diǎn)和極值
解答: 解:∵y′=-3x2+48=-3(x+4)(x-4)
∴函數(shù)y=-x3+48x-3在(-∞,-4)是減函數(shù),在(-4,4)上是增函數(shù),在(4,+∞)是減函數(shù)
∴函數(shù)y=-x3+48x-3在x=4時(shí)取得極大值125
故答案為:125.
點(diǎn)評(píng):利用導(dǎo)數(shù)工具求該函數(shù)的極值是解決該題的關(guān)鍵,要先確定出導(dǎo)函數(shù)等于零的實(shí)數(shù)x的值,再討論出函數(shù)的單調(diào)區(qū)間,根據(jù)極值的判斷方法求出該函數(shù)的極值,體現(xiàn)了導(dǎo)數(shù)的工具作用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-alnx.
(Ⅰ)若a=4,求函數(shù)f(x)的極小值;
(Ⅱ)試問:對(duì)某個(gè)實(shí)數(shù)m,方程f(x)=m-cos2x在x∈(0,+∞)上是否存在三個(gè)不相等的實(shí)根?若存在,請(qǐng)求出實(shí)數(shù)a的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式ax2+bx+2≤0的解集為{x|x≤-1或x≥2},則不等式ax2+2bx+2>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,平面PBC⊥底面ABCD,且PB=PC=
5
.設(shè)面PAD與面PBC的交線為l,則二面角A-l-B的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)棱長(zhǎng)為2的正方體的上底面有一點(diǎn)A,下底面有一點(diǎn)B,則A、B兩點(diǎn)間的距離d滿足的不等式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)是以4為周期的周期函數(shù),且關(guān)于直線x=1對(duì)稱,則f′(5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x-6≤0},B={y|y=
x
,0≤x≤4},則∁U(A∩B)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(-4,-3)且在兩坐標(biāo)軸上截距的絕對(duì)值相等的直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x2-4x+3>0”是“x<1或x>4”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案