直線x=2與雙曲線
x2
4
-y2=1
的漸近線交于A、B兩點,設P為雙曲線上的任意一點,若
OP
=a
OA
+b
OB
(a,b∈R,O為坐標原點),則a、b滿足的關系是(  )
A、ab=
1
2
B、ab=
1
4
C、a2+b2=
1
2
D、a2+b2=
1
4
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:確定A,B的坐標,根據(jù)
OP
=a
OA
+b
OB
,確定坐標之間的關系,可得ab=
1
4
解答: 解:由題意,A(2,1),B(2,-1),
設P(x,y),則
OP
=a
OA
+b
OB
,
∴x=2a+2b,y=a-b
∵P為雙曲線C上的任意一點,
(2a+2b)2
4
-(a-b)2=1

∴4ab=1
∴ab=
1
4

故選B.
點評:本題考查向量知識的運用,考查雙曲線的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

臺風中心從A地以每小時20千米的速度向東北方向移動,離臺風中心30千米的地區(qū)為危險區(qū),城市B在A地正東40千米處,則城市B處在危險區(qū)內(nèi)的時間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“m=n”是“方程mx2+ny2=1表示圓”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題p:(x-2)(x-3)=0,q:x-2=0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin
25π
6
+cos
25π
3
-tan(-
25π
4
)
=( 。
A、0B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式ax2+bx+c≥0的解集是{x|-1≤x≤2},則不等式cx2+bx+a<0的解集是( 。
A、(-∞,-1)∪(
1
2
,+∞)
B、(-
1
2
,1)
C、(-∞,-
1
2
)∪(1,+∞)
D、(-1,
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
上一點A關于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,設∠ABF=α,且α∈[
π
12
 , 
12
]
,則橢圓的離心率的取值范圍為( 。
A、[
2
2
,
6
3
]
B、(0,
2
2
]
C、[
2
2
,1)
D、[
6
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的頂點恰好是橢圓
x2
9
+
y2
5
=1
的兩個頂點,且焦距是6
3
,則此雙曲線的漸近線方程是( 。
A、y=±
1
2
x
B、y=±
2
2
x
C、y=±
2
x
D、y=±2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的命題p:x2-3x-4≤0;q:(x-1)2-a2<0(a>0),若p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習冊答案