在長(zhǎng)方體ABCD-A1B1C1D1中,∠AB1B=45°,∠CB1C1=60°,則異面直線AB1與A1D所成角的余弦值為( 。
A、
3
6
B、
2
6
C、
6
3
D、
6
4
考點(diǎn):異面直線及其所成的角
專題:計(jì)算題,空間角
分析:由異面直線所成的角的定義,先作出這個(gè)異面直線所成的角的平面角,即連接B1C,再證明∠AB1C就是異面直線AB1與 A1D所成的角,最后在△AB1C中計(jì)算此角的余弦值即可
解答: 解:連接B1C,則B1C∥A1D
∴∠AB1C就是異面直線AB1與A1D所成的角
設(shè)AB=1,則在△AB1C中,AC=
2
3
3
,B1A=
2
,B1C=
2
3
3

∴cos∠AB1C=
2
2•
2
2
3
3
=
6
4

∴異面直線AB1與A1D所成的角的余弦值為
6
4

故選:D.
點(diǎn)評(píng):本題考查異面直線所成的角的定義和求法,先作再證后計(jì)算,將空間角轉(zhuǎn)化為平面角的思想
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

焦點(diǎn)在x軸上的雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線與拋物線y=x2+1相切,則雙曲線的離心率為( 。
A、
5
B、
5
2
C、2
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log20.7,b=40.9,c=80.48,d=0.5-1.5,則有( 。
A、a<b<c<d
B、a<c<d<b
C、b<a<c<d
D、b<d<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(π+α)=
4
5
,則cos(3π-α)的值是( 。
A、
4
5
B、-
4
5
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)=loga|x+b|在(0,+∞)上是單調(diào)減函數(shù),則f(b-2)與f(a+1)的大小關(guān)系是( 。
A、f(b-2)=f(a+1)
B、f(b-2)>f(a+1)
C、f(b-2)<f(a+1)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
4x-9y+11≥0
4x+5y-3≥0
2x-y-5≤0
,則目標(biāo)函數(shù)z=2x-3y的最小值為(  )
A、-4B、-2C、-1D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x2-ax+1有負(fù)值,則常數(shù)a的取值范圍是( 。
A、-2<a<2
B、a≠2且a≠-2
C、1<a<3
D、a<-2或a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知多面體ABCDEF中,AB∥CD∥EF,平面ABCD與平面ADE垂直,△ADE是以AD為斜邊的等腰直角三角形,點(diǎn)G為邊BC的中點(diǎn),且AB=AD=2,CD=4,EF=3.
(1)求證:FG⊥平面ABCD;
(2)若∠ADC=120°,求二面角F-BD-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x
x
+
y
)=3
y
x
+5
y
),求
2x+
xy
+3y
x+
xy
-y
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案