已知定點(diǎn)A(8,-6)、B(2,2),l為線段AB的垂直平分線.
(1)求直線l的方程;(2)若x軸上的動(dòng)點(diǎn)P到直線l的距離不超過1,求點(diǎn)P橫坐標(biāo)的取值范圍.

解:(1)∵直線AB的斜率為
∴最小l的斜率為
又線段AB的中點(diǎn)坐標(biāo)為(5,-2)
∴直線l的方程為即3x-4y-23=0
(2)設(shè)出P(x,0),根據(jù)點(diǎn)P到直線l的距離不超過1得
即|3x-23|≤5
解得6≤x≤
∴點(diǎn)P橫坐標(biāo)的取值范圍是
分析:(1)利用兩點(diǎn)連線的斜率公式求出AB的斜率,利用兩直線垂直斜率之積為-1求出l的斜率,利用中點(diǎn)的坐標(biāo)公式求出AB 的中點(diǎn),利用點(diǎn)斜式求出l的方程.
(2)設(shè)出P的坐標(biāo),利用點(diǎn)到直線的距離公式求出p到l的距離,令其小于等于1列出不等式求出點(diǎn)P橫坐標(biāo)的取值范圍.
點(diǎn)評(píng):在解析幾何中,求直線方程的題一般利用待定系數(shù)法來求,但在設(shè)直線的方程時(shí),一定注意直線的斜率是否存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(8,-6)、B(2,2),l為線段AB的垂直平分線.
(1)求直線l的方程;(2)若x軸上的動(dòng)點(diǎn)P到直線l的距離不超過1,求點(diǎn)P橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),焦點(diǎn)為F,一直線l與拋物線交于A、B兩點(diǎn),且|AF|+|BF|=8,且AB的垂直平分線恒過定點(diǎn)S(6,0)
①求拋物線方程;
②求△ABS面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年北京市西城區(qū)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知定點(diǎn)A(8,-6)、B(2,2),l為線段AB的垂直平分線.
(1)求直線l的方程;(2)若x軸上的動(dòng)點(diǎn)P到直線l的距離不超過1,求點(diǎn)P橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(8,-6)、B(2,2),l為線段AB的垂直平分線.
(1)求直線l的方程;(2)若x軸上的動(dòng)點(diǎn)P到直線l的距離不超過1,求點(diǎn)P橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案