分析 (I)設(shè)等差數(shù)列{an }的公差為d,頂點關(guān)于首項和公差的方程組解之;
(II)設(shè)數(shù)列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和為Sn,利用錯位相減法求和.
解答 解:(I)設(shè)等差數(shù)列{an }的公差為d,由已知條件可得$\left\{\begin{array}{l}{{a}_{1}+d=0}\\{2{a}_{1}+12d=-10}\end{array}\right.$
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=-1}\end{array}\right.$,
故數(shù)列{an }的通項公式為an=2-n; …(6分)
(II)設(shè)數(shù)列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和為Sn,即Sn=${a}_{1}+\frac{{a}_{2}}{2}+…+\frac{{a}_{n}}{{2}^{n-1}}$,S1=a1=1,
$\frac{{S}_{n}}{2}=\frac{{a}_{1}}{2}+\frac{{a}_{2}}{4}+…+\frac{{a}_{n-1}}{{2}^{n-1}}+\frac{{a}_{n}}{{2}^{n}}$…(8分)
所以,當(dāng)n>1時,兩式相減得到$\frac{{S}_{n}}{2}={a}_{1}+\frac{{a}_{2}-{a}_{1}}{2}+…+\frac{{a}_{n}-{a}_{{a}_{n-1}}}{{2}^{n-1}}-\frac{{a}_{n}}{{2}^{n}}$
=1-($\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{n-1}}$)-$\frac{2-n}{{2}^{n}}$=1-(1-$\frac{1}{{2}^{n-1}}$)-$\frac{2-n}{{2}^{n}}$=$\frac{n}{{2}^{n}}$ …(12分)
所以${S}_{n}=\frac{n}{{2}^{n-1}}$ …(13分)
綜上,數(shù)列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和為$\frac{n}{{2}^{n-1}}$. …(14分)
點評 本題考查了等差數(shù)列的通項公式的求法以及利用錯位相減法求數(shù)列的前n項和;經(jīng)?疾,注意掌握.
科目:高中數(shù)學(xué) 來源: 題型:解答題
運動員 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 8.7 | 9.1 | 9.0 | 8.9 | 9.3 |
乙 | 8.9 | 9.0 | 9.1 | 8.8 | 9.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 32 | C. | $4\sqrt{6}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 16 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8\sqrt{3}$ | B. | $8\sqrt{2}$ | C. | $6\sqrt{6}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{\sqrt{2}}{2}$) | B. | (-∞,-2) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{\sqrt{2}}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com