已知函數(shù)f(x)=-x3ax24(aR)

(1)若函數(shù)yf(x)的圖象在點P(1f(1))處的切線的傾斜角為,求f(x)[1,1]上的最小值;

(2)若存在x0(0,+∞),使f(x0)0,求a的取值范圍.

 

(1) 最小值為f(0)=-4 (2) (3,+∞)

【解析】(1)f′(x)=-3x22ax.

根據(jù)題意得,f′(1)tan1,32a1,即a2.

f(x)=-x32x24,則f′(x)=-3x24x.

f′(x)0,得x10x2.

x

1

(1,0)

0

(0,1)

1

f′(x)

 

0

 

f(x)

1

?

4

?

3

x[1,1]時,f(x)的最小值為f(0)=-4.

(2)f′(x)=-3x.

a≤0,則當x>0時,f′(x)<0,f(x)(0,+∞)上單調(diào)遞減.

f(0)=-4,則當x0時,f(x)<-4.

a≤0時,不存在x00,使f(x0)0.

a0,則當0x時,f′(x)0

x時,f′(x)0.

從而f(x)上單調(diào)遞增,在上單調(diào)遞減.

x(0,+∞)時,f(x)maxf=-44.

根據(jù)題意得,40,即a327.a3.

綜上可知,a的取值范圍是(3,+∞)

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第2課時練習卷(解析版) 題型:解答題

設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意nN*Snaan的等差中項.

(1)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;

(2)證明2.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第3課時練習卷(解析版) 題型:選擇題

已知1yi,其中xy是實數(shù),i是虛數(shù)單位,則xyi的共軛復數(shù)為( )

A12i B12i C2i D2i

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第1課時練習卷(解析版) 題型:解答題

函數(shù)f(x)Asin 1(A0,ω0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.

(1)求函數(shù)f(x)的解析式;

(2)α,f 2,求α的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第1課時練習卷(解析版) 題型:選擇題

設函數(shù)f(x)sin sin (ω0)的最小正周期為π,則( )

Af(x)上單調(diào)遞減 Bf(x)上單調(diào)遞增

Cf(x)上單調(diào)遞增 Df(x)上單調(diào)遞減

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第5課時練習卷(解析版) 題型:填空題

設函數(shù)yf(x),xR的導函數(shù)為f′(x),且f(x)f(x),f′(x)f(x).則下列三個數(shù):ef(2),f(3),e2f(1)從小到大依次排列為________(e為自然對數(shù)的底數(shù))

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第5課時練習卷(解析版) 題型:選擇題

已知e為自然對數(shù)的底數(shù),則函數(shù)yxex的單調(diào)遞增區(qū)間是(  )

A[1,+∞) B(,-1]

C[1,+∞) D(,1]

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第3課時練習卷(解析版) 題型:填空題

關于函數(shù)f(x)lg(x≠0),有下列命題:

其圖象關于y軸對稱;

x0時,f(x)是增函數(shù);當x0時,f(x)是減函數(shù);

f(x)的最小值是lg 2;

f(x)在區(qū)間(1,0)、(2,+∞)上是增函數(shù);

f(x)無最大值,也無最小值.

其中所有正確結論的序號是________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題四練習卷(解析版) 題型:填空題

在數(shù)列{an}中,a11,a22,若當整數(shù)n>1時,Sn1Sn12(SnS1)恒成立,則S15________

 

查看答案和解析>>

同步練習冊答案