設(shè){}為等差數(shù)列,公差d = -2,為其前n項(xiàng)和.若,則=(  )

A. 18B. 20C. 22D. 24

B

解析考點(diǎn):等差數(shù)列的性質(zhì).
專(zhuān)題:計(jì)算題.
分析:由等差數(shù)列的前10項(xiàng)的和等于前11項(xiàng)的和可知,第11項(xiàng)的值為0,然后根據(jù)等差數(shù)列的通項(xiàng)公式,利用首項(xiàng)和公差d表示出第11項(xiàng),讓其等于0列出關(guān)于首項(xiàng)的方程,求出方程的解即可得到首項(xiàng)的值.
解答:解:由
得到a+a+…+a=a+a+…+a+a
即a=0,
所以a-2(11-1)=0,
解得a=20.
故選B
點(diǎn)評(píng):此題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項(xiàng)公式化簡(jiǎn)求值,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱(chēng)該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱(chēng)該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.

(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;

(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱(chēng)該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱(chēng)該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.

(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;

(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;

(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)新題型解析選編(6)(解析版) 題型:解答題

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱(chēng)該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案