8.若x、y為實(shí)數(shù),且滿(mǎn)足|x-3|+$\sqrt{y+3}$=0,則(${\frac{x}{y}}$)2012的值是1.

分析 根據(jù)非負(fù)數(shù)之和為0,求出x,y的值,即可求出答案.

解答 解:若x、y為實(shí)數(shù),且滿(mǎn)足|x-3|+$\sqrt{y+3}$=0,
∴x=3,y=-3,
∴$\frac{x}{y}$=-1,
∴(${\frac{x}{y}}$)2012=(-1)2012=1,
故答案為:1.

點(diǎn)評(píng) 本題考查了有理數(shù)的運(yùn)算性質(zhì),以及指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)y=f(x)為奇函數(shù),則它的圖象必經(jīng)過(guò)點(diǎn)(  )
A.(0,0)B.(-a,-f(a))C.(a,f(-a))D.(-a,-f(-a))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)是定義在實(shí)數(shù)集上的函數(shù),當(dāng)x∈(0,1]時(shí),f(x)=2x,且對(duì)任意x都有f(x+1)=$\frac{1-2f(x)}{2-f(x)}$,則f(log25)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.0B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.集合A={x||x|<1},B={x|2x<1},則A∩B=( 。
A.(-1,1)B.(0,1)C.$(0,\frac{1}{2})$D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.公園里有一扇形湖面,管理部門(mén)打算在湖中建一三角形觀景平臺(tái),希望面積與周長(zhǎng)都最大.如圖所示扇形AOB,圓心角AOB的大小等于$\frac{π}{3}$,半徑為2百米,在半徑OA上取一點(diǎn)C,過(guò)點(diǎn)C作平行于OB的直線(xiàn)交弧AB于點(diǎn)P.設(shè)∠COP=θ;
(1)求△POC面積S(θ)的函數(shù)表達(dá)式.
(2)求S(θ)的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若方程x2+y2-4x+2y+5k=0表示圓,則k的取值范圍是( 。
A.k>1B.k<1C.k≥1D.k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)是30元/臺(tái)的小商品,在市場(chǎng)試驗(yàn)中發(fā)現(xiàn),此商品的銷(xiāo)售單價(jià)x(x取整數(shù))元與日銷(xiāo)售量y臺(tái)之間有如表關(guān)系:
x35404550
y56412811
(1)畫(huà)出散點(diǎn)圖,并判斷y與x是否具有線(xiàn)性相關(guān)關(guān)系?
(2)求日銷(xiāo)售量y對(duì)銷(xiāo)售單價(jià)x的線(xiàn)性回歸方程;
(3)設(shè)經(jīng)營(yíng)此商品的日銷(xiāo)售利潤(rùn)為P元,根據(jù)(1)寫(xiě)出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測(cè)當(dāng)銷(xiāo)售單價(jià)x為多少元時(shí),才能獲得最大日銷(xiāo)售利潤(rùn).($\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.$\int_{-2}^0{\sqrt{4-{{({x+2})}^2}}}$dx=π.

查看答案和解析>>

同步練習(xí)冊(cè)答案