(2012•汕頭二模)已知集合U={1,2,3,4},M={x|x2-5x+p=0},若?UM={2,3},則實(shí)數(shù)p的值( 。
分析:根據(jù)題目給出的全集及集合?UM求得集合M,然后利用根與系數(shù)關(guān)系求解p的值.
解答:解:由U={1,2,3,4},M={x|x2-5x+p=0},若?UM={2,3},
所以M={1,4}.
由根與系數(shù)關(guān)系得:p=1×4=4.
故選C.
點(diǎn)評(píng):本題考查了補(bǔ)集及其運(yùn)算,考查了一元二次方程的根與系數(shù)關(guān)系,是基礎(chǔ)的運(yùn)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),若函數(shù)y=f(x)-m有三個(gè)不同的零點(diǎn),求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)p(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類(lèi)對(duì)稱點(diǎn)”,請(qǐng)你探究當(dāng)a=4時(shí),函數(shù)y=f(x)是否存在“類(lèi)對(duì)稱點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類(lèi)對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)在數(shù)列{an}中,a1=1、a2=
1
4
,且an+1=
(n-1)an
n-an
(n≥2)

(Ⅰ) 求a3、a4,猜想an的表達(dá)式,并加以證明;
(Ⅱ) 設(shè)bn=
anan+1
an
+
an+1
,求證:對(duì)任意的自然數(shù)n∈N*,都有b1+b2+…+bn
n
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)已知函數(shù)f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)若a為第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1-tana
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)從1,2,3,4,5中不放回地依次取2個(gè)數(shù),事件A=“第一次取到的是奇數(shù)”,B=“第二次取到的是奇數(shù)”,則P(B|A)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)雙曲線x2-
y24
=1的漸近線方程是
y=±2x
y=±2x

查看答案和解析>>

同步練習(xí)冊(cè)答案