【題目】如圖,四棱錐中,底面是邊長為的菱形,且,側(cè)面為等邊三角形,且與底面垂直, 的中點.

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:Ⅰ)由題意取CD中點O,則AOCD,PO⊥底面ABCD,分別以OD、OA、OP分別為x、y、z軸建立如圖所示的空間直角坐標(biāo)系,由題意可得相關(guān)點的坐標(biāo),由可得;

(Ⅱ)設(shè)直線與平面所成角為,求出直線的方向向量和面的法向量,根據(jù)即可得解.

試題解析:

由底面為菱形且,∴, 是等邊三角形,

中點,有

為二面角的平面角, ∴

分別以所在直線為軸,建立空間直角坐標(biāo)系如圖,    

(Ⅰ)由中點,

(Ⅱ)由, ,∴

∴ 平面的法向量可取

, 設(shè)直線與平面所成角為

即直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點,在這兩點處的切線互相垂直,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點P是圓O:x2+y2=1與x軸正半軸的交點,半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點O逆時針旋轉(zhuǎn) 得到半徑OB.設(shè)∠POA=x(0<x<π),
(1)若 ,求點B的坐標(biāo);
(2)求函數(shù)f(x)的最小值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在正方體ABCD﹣A1B1C1D1的面對角線BC1上運(yùn)動,則下列四個結(jié)論:
①三棱錐A﹣D1PC的體積不變;
②A1P∥平面ACD1;
③DP⊥BC1;
④平面PDB1⊥平面ACD1
其中正確的結(jié)論的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+x,x∈R,當(dāng)0≤θ≤π時,f(mcosθ)+f(sinθ﹣2m)<0恒成立,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第26屆世界大學(xué)生夏季運(yùn)動會將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C過點A(﹣ ,1),且與x2﹣3y2=1有相同的漸近線.
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)過雙曲線C的一個焦點作傾斜角為45°的直線l與雙曲線交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在歲的人數(shù);

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案