科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD,,,AF⊥平面ABC,且.E為線段DC上一點,沿直線AE將△ADE翻折成,M為的中點,則三棱錐體積的最小值是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻.為普及防治新冠肺炎的相關(guān)知識,某高中學校開展了線上新冠肺炎防控知識競答活動,現(xiàn)從大批參與者中隨機抽取200名幸運者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計結(jié)果如圖:
(1)若此次知識競答得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200名幸運者得分的平均值和標準差(同一組數(shù)據(jù)用該區(qū)間中點值代替),求,的值(,的值四舍五入取整數(shù)),并計算;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運者制定如下獎勵方案:得分低于的獲得1次抽獎機會,得分不低于的獲得2次抽獎機會.假定每次抽獎中,抽到18元紅包的概率為,抽到36元紅包的概率為.已知高三某同學是這次活動中的幸運者,記為該同學在抽獎中獲得紅包的總金額,求的分布列和數(shù)學期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數(shù)據(jù):;;.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標準,先對本市50%的企業(yè)進行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:
評估得分 | ||||
評定等級 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎勵(萬元) | 20 | 40 | 80 |
(1)環(huán)保部門對企業(yè)抽查評估完成后,隨機抽取了50家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:
評估得分 | ||||||
頻率 | 0.04 | 0.10 | 0.20 | 0.12 |
其中、表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機抽取3個,若以樣本中頻率為概率,求至少有兩家企業(yè)的獎勵不少于40萬元的概率;
(2)某企業(yè)為取得一個好的得分,在評估前投入80萬元進行技術(shù)改造,由于技術(shù)水平問題,被評定為“合格”“良好”和“優(yōu)秀”的概率分別為,和,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設(shè)該企業(yè)當年因改造而增加的利潤為萬元,求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知極點與直角坐標系的原點重合,極軸與軸的正半軸重合,曲線的極坐標方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,是圓上一動點,求點到直線的距離的最小值和最大值;
(2)直線與關(guān)于原點對稱,且直線截曲線的弦長等于,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市在開展創(chuàng)建“全國文明城市”活動中,工作有序扎實,成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評.“創(chuàng)文”過程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護問題情況的問卷調(diào)查,現(xiàn)從參與問卷調(diào)查的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求出a的值;
(2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現(xiàn)要再從這5人中隨機抽取3人進行問卷調(diào)查,設(shè)第2組抽到人,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班同學在假期進行社會實踐活動,對歲的人群隨機抽取n人進行了一次當前投資生活方式——“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求,,的值;
(Ⅱ)從年齡在歲的“房地產(chǎn)投資”人群中采取分層抽樣法抽取9人參加投資管理學習活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com