【題目】函數(shù)f(x)=ax3﹣3x+1 對于x∈[﹣1,1]總有f(x)≥0成立,則a 的取值范圍為(
A.[2,+∞)
B.[4,+∞)
C.{4}
D.[2,4]

【答案】C
【解析】解:①當x=0時,f(x)=1≥0,對于a∈R皆成立.
②當0<x≤1時,若總有f(x)≥0,則ax3﹣3x+1≥0,∴ ,
令g(x)= ,g(x)= = ,令g(x)=0,解得x=
當0 時,g(x)>0;當 時,g(x)<0.
∴g(x)在x= 時取得最大值,g( )=4,∴a≥4.
③當﹣1≤x<0時,若總有f(x)=0,則 ax3﹣3x+1≥0,∴a≤
令h(x)= ,則h(x)= ≥0,
∴h(x)在[﹣1,0)上單調遞增,
∴當x=﹣1時,h(x)取得最小值,h(﹣1)=4,∴a≤4.
由①②③可知:若函數(shù)f(x)=ax3﹣3x+1 對于x∈[﹣1,1]總有f(x)≥0成立,則a必須滿足 ,解得a=4.
∴a 的取值范圍為{4}.
故選C.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的極值的相關知識可以得到問題的答案,需要掌握極值反映的是函數(shù)在某一點附近的大小情況.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個化肥廠生產甲、乙兩種混合肥料,生產1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t;生產1車乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.已知生產1車皮甲種肥料,產生的利潤為10000元;生產1車皮乙種肥料,產生的利潤為5000元.那么分別生產甲、乙兩種肥料各多少車皮,能夠產生最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 是拋物線的焦點, 是拋物線上的任意一點,當位于第一象限內時, 外接圓的圓心到拋物線準線的距離為.

(1)求拋物線的方程;

(2)過的直線交拋物線兩點,且,點軸上一點,且,求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論上的單調性;

(2)是否存在實數(shù),使得上的最大值為,若存在,求滿足條件的的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a為實數(shù),f(x)=(x2﹣4)(x﹣a).
(1)求導數(shù)f′(x);
(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, , 底面, ,且.

(1)若上一點,且,證明:平面平面.

(2)若為棱上一點,且平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(﹣1,1),且同時滿足下列條件:f(1﹣a)+f(1﹣a2)<0.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=sin(x+1) cos(x+1) ,則f(1)+f(2)+f(3)+…+f(2011)=(
A.2
B.
C.﹣
D.0

查看答案和解析>>

同步練習冊答案