已知函數(shù)f(x)在x=1處的導數(shù)為3,則f(x)的解析式可能為


  1. A.
    (x-1)3+3(x-1)
  2. B.
    2(x-1)2
  3. C.
    2(x-1)
  4. D.
    x-1
A
分析:對于選項中給出的函數(shù),依次求導,符合f(1)=3即可.
解答:A中,f′(x)=3(x-1)2+3
B中,f′(x)=4(x-1)
C中,f′(x)=2
D中,f′(x)=1
依次將x=1代入到各個選項中,只有A中,f′(1)=3
故選A.
點評:本題主要涉及的是導數(shù)的計算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-ln(x+a).(a是常數(shù))
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)當y=f(x)在x=1處取得極值時,若關于x的方程f(x)+2x=x2+b在[0.5,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;
(Ⅲ)求證:當n≥2,n∈N+(1+
1
22
)(1+
1
32
)…(1+
1
n2
)<e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在x=1處的導數(shù)為3,f(x)的解析式可能為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga
1-mxx-1
是奇函數(shù).(a>0,且a≠1)
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調性并加以證明.
(3)當a>1,x∈(r,a-2)時,f(x)的值域是(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x∈(-∞,0]時,f(x)=e-x-ex2+a,則函數(shù)f(x)在x=1處的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對一切實數(shù)x∈R恒成立?若存在,求出a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案