【題目】已知函數(shù)處取得極小值.

(1)求實數(shù)的值;

(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個零點,求實數(shù)的取值范圍.(參考數(shù)據(jù):,

【答案】(1)(2)

【解析】

(1)根據(jù)極值的定義,求出,再對的兩種取值分別進行驗證;

(2)由第(1)問先確定,得到,利用導數(shù)研究函數(shù)的單調性,即函數(shù)上單調遞增,在上單調遞減,再結合零點存在定理的條件,得到參數(shù)的取值范圍.

解:(1)由題意得.

因為函數(shù)處取得極小值,

依題意知,解得.

時,,若,則函數(shù)單調遞減,

,則函數(shù)單調遞增,

所以,當時,取得極小值,無極大值,符合題意.

時,,若,則函數(shù)單調遞增;

,,則函數(shù)單調遞減,所以函數(shù)處取得極小值,處取得極大值,符合題意,

綜上,實數(shù).

(2)因為函數(shù)存在極大值與極小值,所以由(1)知,.

所以,.

時,,故函數(shù)上單調遞增,

時,令,則,所以當時,,單調遞增,

時,單調遞減,

因為,

,所以當時,,故上單調遞減.

因為函數(shù)上有兩個零點,所以,所以.

;

,,

所以,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中x,y能與1構成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結果是,那么可以估計的值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了選拔學生參加“XX市中學生知識競賽,先在本校進行選拔測試,若該校有100名學生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;

2)該校推薦選拔測試成績在110以上的學生代表學校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若上存在極大值,求的取值范圍;

2)若軸是曲線的一條切線,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內單調遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年底,我國發(fā)明專利申請量已經連續(xù)8年位居世界首位,下表是我國2012年至2018年發(fā)明專利申請量以及相關數(shù)據(jù).

總計

年代代碼

1

2

3

4

5

6

7

28

申請量(萬件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代碼1~7分別表示2012~2018.

1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達到最高,最高是多少?

2)建立關于的回歸直線方程(精確到0.01),并預測我國發(fā)明專利申請量突破200萬件的年份.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線(α為參數(shù))經過伸縮變換得到曲線C2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系.

(1)C2的普通方程;

(2)設曲線C3的極坐標方程為,且曲線C3與曲線C2相交于MN兩點,點P(1,0),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據(jù),制表如下:

甲公司某員工A


乙公司某員工B

3

9

6

5

8

3

3

2

3

4

6

6

6

7

7







0

1

4

4

2

2

2



每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:

甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(含35件)的部分每件4元,超出35件的部分每件7.

1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);

2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數(shù)學期望;

3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務費.

查看答案和解析>>

同步練習冊答案