已知雙曲線M:
x2
a2
-
y2
b2
=1
和雙曲線N:
y2
a2
-
x2
b2
=1
,其中b>a>0,且雙曲線M與N的交點在兩坐標(biāo)軸上的射影恰好是兩雙曲線的焦點,則雙曲線M的離心率為( 。
分析:根據(jù)雙曲線M與N的交點在兩坐標(biāo)軸上的射影恰好是兩雙曲線的焦點,得交點坐標(biāo)為:(c,c),其中c是兩個雙曲線公共的半焦距.將點(c,c)代入雙曲線M(或雙曲線N)的方程,結(jié)合b2=c2-a2化簡整理,得e4-3e2+1=0,解之得e2=
3+
5
2
=(
5
+1
2
2,從而得到雙曲線M的離心率e=
5
+1
2
解答:解:∵雙曲線M方程為:
x2
a2
-
y2
b2
=1
,雙曲線N方程為:
y2
a2
-
x2
b2
=1
,其中b>a>0,
∴兩個雙曲線的焦距相等,設(shè)為個焦距為2c,其中c滿足:c=
a2+b2

∵雙曲線M與N的交點在兩坐標(biāo)軸上的射影恰好是兩雙曲線的焦點,
∴交點坐標(biāo)為:(c,c),代入雙曲線M(或雙曲線N)的方程,得
c2
a2
-
c2
b2
=1
,結(jié)合b2=c2-a2得:
c2
a2
-
c2
c2-a2
=1
,
去分母,得c2(c2-a2)-a2c2=a2(c2-a2),
整理,得c4-3a2c4+a4=0,所以e4-3e2+1=0,解之得e2=
3+
5
2
=(
5
+1
2
2(另一值小于1舍去)
∴雙曲線M的離心率e=
5
+1
2

故選A
點評:本題給出兩個形狀相同,但焦點分別在x、y上的雙曲線,它們的交點在兩坐標(biāo)軸上的射影恰好是兩雙曲線的焦點,求該雙曲線的離心率,著重考查了雙曲線的簡單性質(zhì)與基本概念,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a
-
y2
3
=1的一條漸近線方程為y=
3
x,則拋物線y2=4ax上一點M(2,y0)到該拋物線焦點F的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線
x2
a 2
-
y2
b 2
=1
(b>a>0),0為坐標(biāo)原點,離心率e=2,點M(
5
,
3
)在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P、Q兩點,且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:寧波模擬 題型:單選題

已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域為R”.則P是Q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線
x2
a
-
y2
3
=1的一條漸近線方程為y=
3
x,則拋物線y2=4ax上一點M(2,y0)到該拋物線焦點F的距離是______.

查看答案和解析>>

同步練習(xí)冊答案