8.執(zhí)行如圖的程序框圖,輸出的S的值為(  )
A.6B.5C.4D.3

分析 根據(jù)程序框圖的功能是求S=1•log23•log34•log45•log56•log67•log78•log88,判斷終止程序運行的k值,利用對數(shù)換底公式求得S值.

解答 解:由程序框圖得:第一次運行S=1•log23,k=3;
第二次運行S=1•log23•log24,k=4;
第二次運行S=1•log23•log34•log45,k=5;
第三次運行S=1•log23•log34•log45•log56,k=6;

直到k=8時,程序運行終止,此時S=1•log23•log34•log45•log56•log67•log78•log88=3;
故選:D.

點評 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,判斷程序框圖的運行功能是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=0.33,b=30.3,c=0.23,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A、B、C所對的邊分別為a,b,c,$\sqrt{3}$bcosA=asinB.
(1)求A;
(2)若a=$\sqrt{2}$,$\frac{c}{a}$=$\frac{sinA}{sinB}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知PQ是半徑為1的圓A的直徑,B,C為不同于P,Q的兩點,如圖所示,記∠PAB=θ.
(1)若BC=$\sqrt{2}$,求四邊形PBCQ的面積的最大值;
(2)若BC=1,求$\overrightarrow{BP}$•$\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}為等比數(shù)列,則下列結(jié)論正確的是( 。
A.a1+a3≥2a2B.若a3>a1,則a4>a2C.若a1=a3,則a1=a2D.a12+a32≥2a22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)=x1nx-ax2-x(a∈R).
(I)若函數(shù)f(x)在x=1處取得極值,求a的值;
(II)若函數(shù)f(x)的圖象在直線y=-x圖象的下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),且當x∈(-1,1]時,f(x)=|x|,函數(shù)g(x)=$\left\{\begin{array}{l}sinπx,x>0\\-\frac{1}{x},x<0\end{array}$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù)為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,且Sn=2n+1-2(n∈N*).
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ) 令bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤4}\\{x+y-4≥0}\\{x-y≥0}\end{array}\right.$,則z=2x+y的最小值是(  )
A.4B.6C.8D.12

查看答案和解析>>

同步練習冊答案