分析 設(shè)A(x1,y1),依題意可求得拋物線y2=x的焦點(diǎn)F($\frac{1}{4}$,0)與準(zhǔn)線方程x=-$\frac{1}{4}$,利用拋物線的定義,將|AF|轉(zhuǎn)化為點(diǎn)A到其準(zhǔn)線的距離,通過(guò)解方程組即可求得|FA|的最大值,從而可得|AF|的取值范圍.
解答 解:設(shè)A(x1,y1),依題意,拋物線y2=x的焦點(diǎn)F($\frac{1}{4}$,0),準(zhǔn)線方程為x=-$\frac{1}{4}$,
由拋物線的定義知,|FA|=x1+$\frac{1}{4}$
當(dāng)θ=180°時(shí),x1=0,|FA|=$\frac{1}{4}$,此時(shí)直線和拋物線只有一個(gè)交點(diǎn),與題意不符;
當(dāng)θ=45°時(shí),|FA|最大,此時(shí)直線FA的方程為:y=x-$\frac{1}{4}$,
由$\left\{\begin{array}{l}{{y}^{2}=x}\\{y=x-\frac{1}{4}}\end{array}\right.$得x2-$\frac{3}{2}$x+$\frac{1}{16}$=0,
解得x=$\frac{3}{4}+\frac{\sqrt{2}}{2}$或x=$\frac{3}{4}$-$\frac{\sqrt{2}}{2}$(舍).
∴|FA|max=$\frac{3}{4}+\frac{\sqrt{2}}{2}$+$\frac{1}{4}$=1+$\frac{\sqrt{2}}{2}$.
∴|AF|的取值范圍是($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$].
故答案為:($\frac{1}{4}$,1+$\frac{\sqrt{2}}{2}$].
點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì),考查方程思想與等價(jià)轉(zhuǎn)化思想,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,2] | B. | [1,2] | C. | [0,1] | D. | [-1,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com