關(guān)于函數(shù)f(x)=2x3-6x2+7,下列說法不正確的是


  1. A.
    在區(qū)間(-∞,0)內(nèi),f(x)為增函數(shù)
  2. B.
    在區(qū)間(0,2)內(nèi),f(x)為減函數(shù)
  3. C.
    在區(qū)間(2,+∞)內(nèi),f(x)為增函數(shù)
  4. D.
    在區(qū)間(-∞,0)∪(2,+∞)內(nèi),f(x)為增函數(shù)
D
分析:先對(duì)函數(shù)f(x)求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,求出單調(diào)區(qū)間,對(duì)選項(xiàng)逐一驗(yàn)證即可得到答案.
解答:∵f(x)=2x3-6x2+7∴f'(x)=6x2-12x
令f'(x)>0,則x>2或x<0,此時(shí)函數(shù)f(x)單調(diào)遞增
f'(x)<0,則0<x<2,此時(shí)函數(shù)f(x)單調(diào)遞減
所以函數(shù)f(x)的增區(qū)間為:(-∞,0),(2,+∞)
減區(qū)間為:(0,2)
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于函數(shù)f(x)=(2x-x2)ex的判斷正確的是( 。
①f(x)>0的解集是{x|0<x<2};
②f(-
2
)是極小值,f(
2
)是極大值;
③f(x)沒有最小值,也沒有最大值.
A、①③B、①②③C、②D、①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是R,對(duì)任意x∈R,f(x+2)-f(x)=0,當(dāng)x∈[-1,1)時(shí),f(x)=x.關(guān)于函數(shù)f(x)給出下列四個(gè)命題:
①函數(shù)f(x)是奇函數(shù);
②函數(shù)f(x)是周期函數(shù);
③函數(shù)f(x)的全部零點(diǎn)為x=2k,k∈Z;
④當(dāng)x∈[-3,3)時(shí),函數(shù)g(x)=
1x
的圖象與函數(shù)f(x)的圖象有且只有三個(gè)公共點(diǎn).
其中全部真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于函數(shù)f(x)=x3-3x2+1(x∈R)的性質(zhì)敘述錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=2(sinx-cosx)cosx的四個(gè)結(jié)論:
P1:最大值為
2
;
P2:最小正周期為π;
P3:?jiǎn)握{(diào)遞增區(qū)間為[kπ-
π
8
,kπ+
3
8
π],k∈
Z;
P4:圖象的對(duì)稱中心為(
k
2
π+
π
8
,-1),k∈
Z.
其中正確的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=2x-2-x有下列三個(gè)結(jié)論;①函數(shù)f(x)的值域?yàn)镽;②函數(shù)f(x)是R上的增函數(shù);③對(duì)任意的x∈R都有f(x)+f(-x)=0成立.其中正確命題的序號(hào)是
①②③
①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案