定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204041748555111/SYS201404120404363448888256_ST.files/image001.png">的函數(shù)圖象上兩點(diǎn)圖象上任意一點(diǎn),其中.已知向量,若不等式對(duì)任意恒成立,則稱函數(shù)上“k階線性近似”.若函數(shù)上“k階線性近似”,則實(shí)數(shù)的k取值范圍為(   )

A.      B.      C.     D.

 

【答案】

C

【解析】

試題分析:由題意可得點(diǎn)N與在直線AB上,并且由點(diǎn)M的橫坐標(biāo)為.又向量,可得點(diǎn)N的橫坐標(biāo)也為所以點(diǎn)M,N在橫坐標(biāo)相同.所以符合不等式對(duì)任意恒成立,則稱函數(shù)上的既要大于或等于的最大值,這是解題的關(guān)鍵.由函數(shù),.所以==.又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204041748555111/SYS201404120404363448888256_DA.files/image013.png">.所以即求.…的最大值由打鉤函數(shù)可得時(shí)式的最大值是.所以.所以.故選C.

考點(diǎn):1.向量的知識(shí).2.新定義問題.3.函數(shù)的最值.4.恒成立問題.5.大鉤函數(shù)求最值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a,b應(yīng)滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時(shí)M點(diǎn)的坐標(biāo);
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)的有奇數(shù)個(gè)”是否正確?若正確,給出證明,并舉一例;若不正確,請(qǐng)舉一反例說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+
5x
的定義域?yàn)椋?,+∞).設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域?yàn)椋?,+∞),a>0且當(dāng)x=1時(shí)取得最小值,設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請(qǐng)說明理由;
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案