12.函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,(其中A>0,ω>0,|φ|<$\frac{π}{2}$),則下列關(guān)于函數(shù)f(x)的說法中正確的是②③(寫出所有正確的序號)

①函數(shù)f(x)的對稱中心是(-$\frac{π}{6}$+2kπ,0)(k∈Z)
②函數(shù)f(x)的解析式是f(x)=sin(x+$\frac{π}{6}$)
③函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為$\frac{1}{2}$;
④把函數(shù)f(x)圖象上每一點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍,縱坐標(biāo)不變,所得函數(shù)的圖象關(guān)于y軸對稱.

分析 根據(jù)函數(shù)的圖象求出f(x)的解析式,幾次考察各項(xiàng)可得答案.

解答 解:由圖象可知A=1,T=2×$(\frac{5π}{6}+\frac{π}{6})$=2π,
∵T=$\frac{2π}{ω}=2π$,
∴ω=1
可得f(x)=sin(x+φ)
圖象過點(diǎn)($-\frac{π}{6}$,0),故sin($-\frac{π}{6}$+φ)=0,
解得:φ=$\frac{π}{6}$.
∴函數(shù)f(x)=sin(x+$\frac{π}{6}$),∴②對
由對稱中心:x+$\frac{π}{6}$=kπ,可得x=k$π-\frac{π}{6}$,函數(shù)f(x)的對稱中心是(-$\frac{π}{6}$+kπ,0)(k∈Z),∴①不對
x∈[0,$\frac{π}{2}$]上,則x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],當(dāng)x+$\frac{π}{6}$=$\frac{π}{6}$時,f(x)取得最小值為$\frac{1}{2}$,∴③對.
把函數(shù)f(x)圖象上每一點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍,可得g(x)=sin(3x+$\frac{π}{6}$),圖象沒有關(guān)于y軸對稱,∴④不對.故②③對.
故答案為:②③

點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在一次實(shí)驗(yàn)中,測得(x,y)的四組值分別是A(1,2),B(2,3),C(3,4),D(4,5),則x與y之間的回歸直線方程為( 。
A.$\widehat{y}$=x+1B.$\widehat{y}$=x+2C.$\widehat{y}$=2x+1D.$\widehat{y}$=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對任意的非零實(shí)數(shù)a,b,若$a?b=\left\{\begin{array}{l}\frac{b-1}{a},a<b\\ \frac{a+1},a≥b\end{array}\right.$則lg10000$?{(\frac{1}{2})^{-2}}$=( 。
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正整數(shù)數(shù)列{an}對任意p,q∈N*,都有ap+q=ap+aq,若a2=4,則a9=( 。
A.6B.9C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.復(fù)數(shù)z=$\frac{6+8i}{(4+3i)(1+i)}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)與g(x)分別是定義在R上的奇函數(shù)與偶函數(shù),函數(shù)f(x)的零點(diǎn)個數(shù)為F,g(x)的零點(diǎn)個數(shù)為G,且F、G都是常數(shù).則下列判斷正確的是( 。
A.F一定是奇數(shù),G可能是奇數(shù)B.F可能是偶數(shù),G一定是偶數(shù)
C.F一定是奇數(shù),G一定是偶數(shù)D.F可能是偶數(shù),G可能是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-2<x<0},B={x|y=$\sqrt{x+1}$}
(1)求(∁RA)∩B;
(2)若集合C={x|a<x<2a+1},且C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知兩點(diǎn)F1(-6,0)、F2(6,0),點(diǎn)P為橢圓上任意一點(diǎn),|PF1|+|PF2|=20
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)求出橢圓的長軸的長,短軸長,頂點(diǎn)的坐標(biāo),離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={x|y=ln(x-1)},集合B={y|y=2x},則A∩B( 。
A.1≤m≤2B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案