【題目】在某年級(jí)的聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸獎(jiǎng)游戲,在一個(gè)口袋中裝有3個(gè)紅球和7個(gè)白球,這些球除顏色外完全相同,一次從中摸出3個(gè)球.

(1)設(shè)表示摸出的紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

(2)為了提高同學(xué)們參與游戲的積極性,參加游戲的同學(xué)每人可摸球兩次,每次摸球后放回,若規(guī)定兩次共摸出紅球的個(gè)數(shù)不少于,且中獎(jiǎng)概率大于60%時(shí),即中獎(jiǎng),求的最大值.

【答案】(1)(2)

【解析】【試題分析】(1)的可能有,利用超幾何分布的計(jì)算公式計(jì)算分布列和數(shù)學(xué)期望.(2)兩次共摸出紅球的個(gè)數(shù)為,則,由于每次摸球后放回,故利用相互獨(dú)立事件概率計(jì)算公式來(lái)計(jì)算每種情況的概率值,由此求得的最大值為.

【試題解析】

(1)

, , ,

,

的分布列為

0

1

2

3

的數(shù)學(xué)期望為.

(2)設(shè)兩次共摸出紅球的個(gè)數(shù)為,則

, , , , ,

則有,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線l的方程為,圓O的方程為

(1)當(dāng)m取一切實(shí)數(shù)時(shí),直線l與圓O都有公共點(diǎn),求r的取值范圍;

(2)當(dāng)時(shí),直線與圓O交于M,N兩點(diǎn),若,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住2022年冬奧會(huì)契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和銷售策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷售量至少達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,直線交橢圓兩點(diǎn).

(1)求橢圓的方程;

(2)求證:點(diǎn)在直線上;

(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列滿足 .

(1)求的通項(xiàng)公式;

(2)各項(xiàng)均為正數(shù)的等比數(shù)列中, , ,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斜率為k的直線l經(jīng)過(guò)拋物線yx2的焦點(diǎn)F,且與拋物線相交于AB兩點(diǎn),若線段|AB|的長(zhǎng)為8.

(1)求拋物線的焦點(diǎn)F的坐標(biāo)和準(zhǔn)線方程;

(2)求直線的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) .若曲線在點(diǎn)處的切線方程為為自然對(duì)數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式在(0,+)上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】屠呦呦,第一位獲得諾貝爾科學(xué)獎(jiǎng)項(xiàng)的中國(guó)本土科學(xué)家,在2015年獲得諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng),理由是她發(fā)現(xiàn)了青蒿素.這種藥品可以有效降低瘧疾患者的死亡率從青篙中提取的青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%.據(jù)監(jiān)測(cè):服藥后每毫升血液中的含藥量y(微克)與時(shí)間t(小時(shí))之間近似滿足如圖所示的曲線.

(Ⅰ)寫出服藥一次后yt之間的函數(shù)關(guān)系式;

(Ⅱ)據(jù)進(jìn)一步測(cè)定:每毫升血液中含藥量不少于微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,平行于軸且過(guò)點(diǎn)的入射光線被直線反射,反射光線軸于點(diǎn),圓過(guò)點(diǎn),且與相切.

(Ⅰ)求所在直線的方程;

(Ⅱ)求圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案