橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標準方程.

 

【答案】

【解析】主要考查橢圓的幾何性質(zhì)及橢圓方程的求法。利用待定系數(shù)法。

解:(1)當 為長軸端點時, , ,

橢圓的標準方程為: ;

(2)當 為短軸端點時, , ,

橢圓的標準方程為: ;

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個頂點為A(0,-1),焦點在x軸上.若右焦點到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點M、N.當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)焦點在y軸上的橢圓的一個頂點為A(2,0),其長軸長是短軸長的2倍,求橢圓的標準方程.
(2)已知雙曲線的一條漸近線方程是x+2y=0,并經(jīng)過點(2,2),求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個頂點為A(0,-1),焦點在x軸上,離心率為
6
3

(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點M、N,當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個頂點為A(0,-1),焦點在x軸上,且右焦點到直線x-y+2
2
=0的距離為3,一條斜率為k(k≠0)的直線l與該橢圓交于不同的兩點M、N,且滿足|
AM
|=|
AN
|
,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案