已知圓C1:x2+y2-2y=0,圓C2:x2+(y+1)2=4的圓心分別為C1,C2,P為一個動點,且直線PC1,PC2的斜率之積為-.
(1)求動點P的軌跡M的方程;
(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C,D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請說明理由.
(1)+y2=1(x≠0)(2)不存在
【解析】(1)兩圓的圓心坐標(biāo)分別為C1(0,1),和C2(0,-1),
設(shè)動點P的坐標(biāo)為(x,y),則直線PC1,PC2的斜率分別為(x≠0)和 (x≠0).
由已知條件得=-(x≠0),即+y2=1(x≠0).
所以動點P的軌跡M的方程為+y2=1(x≠0).
(2)假設(shè)存在滿足條件的直線l,易知點A(2,0)在橢圓M的外部,當(dāng)直線l的斜率不存在時,直線l與橢圓M無交點,此時不符合題意,所以直線l斜率存在,設(shè)為k,則直線l的方程為y=k(x-2).
聯(lián)立方程組得(2k2+1)x2-8k2x+8k2-2=0,①
依題意Δ=-8(2k2-1)>0,解得-<k<.
當(dāng)-<k<時,設(shè)交點分別為C(x1,y1),D(x2,y2),CD的中點為N(x0,y0),
則x1+x2=,則x0==,
所以y0=k(x0-2)=k=.
要使|C1C|=|C1D|,必須C1N⊥l,即k·kC1N=-1,
所以k·=-1,即k2-k+=0,
因為Δ1=1-4×=-1<0,∴k2-k+=0無解,
所以不存在直線,使得|C1C|=|C1D|,
綜上所述,不存在直線l,使得|C1C|=|C1D|.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時練習(xí)卷(解析版) 題型:選擇題
已知曲線f(x)=ln x在點(x0,f(x0))處的切線經(jīng)過點(0,-1),則x0的值為( )
A. B.1
C.e D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時練習(xí)卷(解析版) 題型:填空題
已知全集U=R,Z是整數(shù)集,集合A={x|x2-x-6≥0,x∈R},則Z∩∁UA中元素的個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:填空題
如圖所示的圖形由小正方形組成,請觀察圖①至圖④的規(guī)律,并依此規(guī)律,得第n個圖形中小正方形的個數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:選擇題
已知在等比數(shù)列{an}中,有a3a11=4a7,數(shù)列{bn}是等差數(shù)列,且a7=b7,則b5+b9=( )
A.2 B.4 C.8 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:填空題
已知拋物線方程為x2=4y,過點M(0,m)的直線交拋物線于A(x1,y1),B(x2,y2)兩點,且x1x2=-4,則m的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:選擇題
過點A(2,3)且垂直于直線2x+y-5=0的直線方程為( )
A.x-2y+4=0 B.2x+y-7=0
C.x-2y+3=0 D.x-2y+5=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:解答題
如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD;
(3)求二面角F-BC-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題三練習(xí)卷(解析版) 題型:選擇題
△ABC的三個內(nèi)角A,B,C的對邊分別a,b,c,且acos C,bcos B,ccos A成等差數(shù)列,則角B等于( )
A.30° B.60° C.90° D.120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com