【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若對任意恒成立,求實(shí)數(shù)的取值范圍(為自然常數(shù));

(3)求證:

【答案】(1)當(dāng)時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;當(dāng)時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

(2)

(3)證明見解析

【解析】

(1)求導(dǎo)得到,討論兩種情況得到答案.

(2) 令,討論的單調(diào)性,計(jì)算的最值得到答案.

(3) 令,上單調(diào)遞增,得到對一切成立,故代入計(jì)算得到到答案.

(1)函數(shù)的定義域?yàn)?/span>,

當(dāng)時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

當(dāng)時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;

(2)令,

,令,則,

(a)若,即是增函數(shù),

, 無解.

(b)若,則是減函數(shù),

所以,

(c)若,即是減函數(shù), 在是增函數(shù),

最大值可得,可得

所以 ,

綜上所述 ,

(3)令,此時,所以

由(1)知上單調(diào)遞增,∴當(dāng)時,,∴對一切成立,

,則有,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)e為自然對數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對任意恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面,,, , ,的中點(diǎn).

(1)求證:平面

(2)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠需要建造一個倉庫,根據(jù)市場調(diào)研分析,運(yùn)費(fèi)與工廠和倉庫之間的距離成正比,倉儲費(fèi)與工廠和倉庫之間的距離成反比,當(dāng)工廠和倉庫之間的距離為4千米時,運(yùn)費(fèi)為20萬元,倉儲費(fèi)為5萬元.求:工廠和倉庫之間的距離為多少千米時,運(yùn)費(fèi)與倉儲費(fèi)之和最小,最小為多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;

②兩個變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;

③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報(bào)變量平均減少0.5個單位;

④兩個模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線恒過樣本點(diǎn)的中心,且至少過一個樣本點(diǎn);

⑥若的觀測值滿足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺;

⑦從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤. 其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的公差為項(xiàng)和為的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一般來說,一個人腳掌越長,他的身高就越高.現(xiàn)對10名成年人的腳掌長與身高進(jìn)行測量,得到數(shù)據(jù)(單位均為)作為樣本如下表所示.

腳掌長(x

20

21

22

23

24

25

26

27

28

29

身高(y

141

146

154

160

169

176

181

188

197

203

1)在上表數(shù)據(jù)中,以“腳掌長”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程

2)若某人的腳掌長為,試估計(jì)此人的身高;

3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人作進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.

(參考數(shù)據(jù):,,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以為直徑的圓上兩點(diǎn),,,上一點(diǎn),且,將圓沿直徑折起,使點(diǎn)在平面的射影上,已知.

1)求證:平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,且,.

(Ⅰ)求證:;

(Ⅱ)求直線AB與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案