分析 (Ⅰ)令t=2x-1,則y=log2t,根據(jù)對數(shù)函數(shù)的性質(zhì)求出函數(shù)的單調(diào)性即可;
(Ⅱ)問題轉(zhuǎn)化為m=g(x)-f(x)在區(qū)間[1,2]上有解,令$h(x)=g(x)-f(x)={log_2}({\frac{{{2^x}+1}}{{{2^x}-1}}})$,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
解答 解:(Ⅰ)函數(shù)$f(x)={log_2}({2^x}-1)$的定義域為(0,+∞),
令t=2x-1,y=log2t,
當(dāng)x∈(0,+∞)時,函數(shù)t=2x-1單調(diào)遞增,
當(dāng)t∈(0,+∞)時,函數(shù)y=log2t單調(diào)遞增,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞);
(Ⅱ)方程g(x)=m+f(x)在區(qū)間[1,2]上有解,
即m=g(x)-f(x)在區(qū)間[1,2]上有解,
令$h(x)=g(x)-f(x)={log_2}({\frac{{{2^x}+1}}{{{2^x}-1}}})$,令$t=\frac{{{2^x}+1}}{{{2^x}-1}}=1+\frac{2}{{{2^x}-1}}$,
當(dāng)x∈[1,2]時,$t∈[{\frac{5}{3},3}]$,
所以$h(x)∈[{{{log}_2}\frac{5}{3},{{log}_2}3}]$,
所以$m∈[{{{log}_2}\frac{5}{3},{{log}_2}3}]$.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查對數(shù)函數(shù)的性質(zhì)以及換元思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
f(x) | 123.5 | 21.5 | -7.82 | 11.57 | -53.7 | -126.7 | -129.6 |
A. | 5個 | B. | 4個 | C. | 3個 | D. | 2個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
年產(chǎn)量/畝 | 年種植成本/畝 | 每噸售價 | |
黃瓜 | 4噸 | 1.2萬元 | 0.55萬元 |
冬瓜 | 6噸 | 0.9萬元 | 0.3萬元 |
A. | 50,0 | B. | 30,20 | C. | 20,30 | D. | 0,50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-3) | B. | (-1,0) | C. | (4,5) | D. | (-4,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3-2$\sqrt{2}$ | B. | 4-2$\sqrt{3}$ | C. | 1 | D. | 5-2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 0或1 | D. | 0或-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com