是正數(shù)等差數(shù)列,是正數(shù)等比數(shù)列,且a1=b1,a2n+1=b2n+1,則

     A.an+1=bn+1        B.an+1bn+1       C.an+1bn+1                 D.an+1bn+1

 

【答案】

D

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}是各項均為正數(shù)的無窮項等差數(shù)列.(本題中必要時可使用公式:12+22+33+…+n2=
n(n+1)(2n+1)
6

(Ⅰ)記Sn=a1+a2+…+an,Tn=a12+a22+…+an2,已知Snn2+n-1,Tn
4n3-n
3
(n∈N*),試求此等差數(shù)列的首項a1及公差d;
(Ⅱ)若{an}的首項a1及公差d都是正整數(shù),問在數(shù)列{an}中是否包含一個非常數(shù)列的無窮項等比數(shù)列{a′m}?若存在,請寫出{a′m}的構(gòu)造過程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當且僅當a=b時取等號)”推廣到三個正數(shù)時結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個常數(shù)a,設x=x1時,f(x)取得最大值.試構(gòu)造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構(gòu)成以x1為首項的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差是d,Sn是該數(shù)列的前n項和、
(1)試用d,Sm,Sn表示Sm+n,其中m,n均為正整數(shù);
(2)利用(1)的結(jié)論求解:“已知Sm=Sn(m≠n),求Sm+n”;
(3)若各項均為正數(shù)的等比數(shù)列{bn}的公比為q,前n項和為Sn,試類比問題(1)的結(jié)論,寫出一個相應的結(jié)論且給出證明,并利用此結(jié)論求解問題:“已知各項均為正數(shù)的等比數(shù)列{bn},其中S10=5,S20=15,求數(shù)列{bn}的前50項和S50.”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宿遷一模)已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,數(shù)列{an2}的前n項和為Tn,且(Sn-2)2+3Tn=4,n∈N*
(1)證明數(shù)列{an}是等比數(shù)列,并寫出通項公式;
(2)若Sn2Tn<0對n∈N*恒成立,求λ的最小值;
(3)若an,2xan+1,2yan+2成等差數(shù)列,求正整數(shù)x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}(n∈N*)的通項公式;
(2)設g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數(shù)解的個數(shù),求g(k);
(3)記數(shù)列{
12
an
}
的前n項和為Sn,是否存在正數(shù)λ,對任意正整數(shù)n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案