精英家教網 > 高中數學 > 題目詳情
精英家教網函數y=f(x)是定義在R上的偶函數,且f(-1+x)=f(-1-x),當x∈[-2,-1]時,f(x)=t(x+2)3-t(x+2)(t∈R),記函數y=f(x)的圖象在(
1
2
,f(
1
2
))處的切線為l,f′(
1
2
)=1.
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)點列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次為x軸上的點,如圖,當n∈N*時,點An,Bn,An+1構成以AnAn+1為底邊的等腰三角形.若x1=a(0<a<1),求數列{xn}的通項公式;
(Ⅲ)在(Ⅱ)的條件下,是否存在實數a使得數列{xn}是等差數列?如果存在,寫出a的一個值;如果不存在,請說明理由.
分析:(Ⅰ)由函數y=f(x)是定義在R上的偶函數和f(-1+x)=f(-1-x)變形可得f(-1+x)=f(-1-x)=f(1+x),得到f(x)是周期為2的函數,取x∈[0,1],則有x-2∈[-2,-1],可化簡f(x),最后由f(
1
2
)=1
,求得t,從而得到f(x).
(Ⅱ)在(I)下,求得切線的方程“B1(b1,2),B2(b2,3),Bn(bn,n+1)在l上”求得bn“點An,Bn,An+1構成以AnAn+1為底邊的等腰三角形”求得xn+xn+1=2bn=2n①,由遞推可得xn+1+xn+2=2n+2②兩式相減得xn+2-xn=2,間隔項成等差數列.
(Ⅲ)假設{xn}是等差數列,用等差數列的定義可有n-a-n-1+a=常數,不妨設常數為零則有a=
1
2
解答:解:(Ⅰ)∵函數y=f(x)是定義在R上的偶函數,且f(-1+x)=f(-1-x)
∴f(-1+x)=f(-1-x)=f(1+x);
∴y=f(x)是周期為2的函數(1分)
∵當x∈[0,1]時,x-2∈[-2,-1]
∴f(x)=f(x-2)=tx3-tx
f(
1
2
)=1
可知t=-4
∴f(x)=-4x3+4x,x∈[0,1]

(Ⅱ)∵函數y=f(x)的圖象在
1
2
 , f(
1
2
) )
處的切線為l,且f(
1
2
)=1
,
∴切線l過點(
1
2
3
2
)
且斜率為1,
∴切線l的方程為y=x+1
∵B1(b1,2),B2(b2,3),Bn(bn,n+1)在l上,有n+1=bn+1即bn=n
∵點An,Bn,An+1構成以AnAn+1為底邊的等腰三角形
∴xn+xn+1=2bn=2n①
同理xn+1+xn+2=2n+2②兩式相減得xn+2-xn=2
∵x1=a,x2=2-a
xn=
 n-1+a,n為奇數
n-a,n為偶數

(Ⅲ)假設{xn}是等差數列,則n-a-n-1+a=常數,
不妨設常數為零
則有a=
1
2

故存在實數a使得數列{xn}是等差數列.
點評:本題主要考查數列與函數的綜合運用,主要涉及了函數的對稱性,奇偶性,周期性,數列的定義及其通項,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(0,-1)且與直線y=-1有且只有一個公共點;設點P(x0,y0)是函數y=f(x)圖象上任意一點,過點P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心Q;
(3)證明:線段PM,PN長度的乘積PM•PN為定值;并用點P橫坐標x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數學 來源: 題型:

某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數,并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).
(1)求函數y=f(x)的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動點P(x,y)在∠AOx的內部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當k為定值時,動點P的縱坐標y是橫坐標x的函數,求這個函數y=f(x)的解析式;
(2)根據k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數學 來源: 題型:

關于函數y=f(x),有下列命題:
①若a∈[-2,2],則函數f(x)=
x2+ax+1
的定域為R;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調增區(qū)間為(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,則
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞)
④定義在R的函數f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期.
其中真命題的編號是
 
.(文理相同)

查看答案和解析>>

科目:高中數學 來源: 題型:

某服裝批發(fā)商場經營的某種服裝,進貨成本40元/件,對外批發(fā)價定為60元/件.該商場為了鼓勵購買者大批量購買,推出優(yōu)惠政策:一次購買不超過50件時,只享受批發(fā)價;一次購買超過50件時,每多購買1件,購買者所購買的所有服裝可在享受批發(fā)價的基礎上,再降低0.1元/件,但最低價不低于50元/件.
(Ⅰ)問一次購買150件時,每件商品售價是多少?
(Ⅱ)問一次購買200件時,每件商品售價是多少?
(Ⅲ)設購買者一次購買x件,商場的售價為y元,試寫出函數y=f(x)的表達式.

查看答案和解析>>

同步練習冊答案