已知二次函數(shù)y=f(x)經(jīng)過點(1,20),其導(dǎo)函數(shù)f′(x)=4x-22.數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N+)均在函數(shù)y=f(x)的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{|an|}前n項和為Tn,求Tn
考點:數(shù)列與函數(shù)的綜合,數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件利用導(dǎo)數(shù)的性質(zhì),求出f(x)=2x2-22x+40,從而得到Sn=2n2-22n+40,由此能求出數(shù)列{an}通項公式.
(Ⅱ)由(Ⅰ)得到|an|=
24-4n,n≤6
4n-24,n≥7
,由此能求出數(shù)列{|an|}前n項和Tn
解答: 解:(Ⅰ)∵f′(x)=4x-22,
∴f(x)=2x2-22x+c,
∵y=f(x)經(jīng)過點(1,20),∴c=40,∴f(x)=2x2-22x+40.
∵數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N+)均在函數(shù)y=f(x)的圖象上,
Sn=2n2-22n+40,
當n≥2時,an=Sn-Sn-1=2n2-22n+40-2(n-1)2+22(n-1)-40
=4n-24,…(3分)
當n=1時,a1=20
所以數(shù)列通項an=
20,n=1
4n-24,n≥2,n∈N+
.…(3分)
(Ⅱ)∵an=
20,n=1
4n-24,n≥2,n∈N+
,
|an|=
24-4n,n≤6
4n-24,n≥7

∴當n≤6時,Tn=
(20+24-4n)n
2
=n(22-2n)…(3分)
當n≥7時,Tn=T6+
(4+4n-24)(n-6)
2

=60+(2n-10)(n-6)=2n2-22n+120.
∴Tn=
n(22-2n),n≤6
2n2-22n+120,n≥7
.(3分)
點評:本題考查數(shù)列的通項公式和前n項和的求法,是中檔題,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(Ⅰ)若f(x)在x=
1
4
處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標為x0,證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-5x-6<0},B={x||x|<2},則A∩(∁RB)=(  )
A、(-1,2)
B、[-1,2)
C、(2,6)
D、[2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=cosωx(ω>0)的圖象向右平移
π
6
個單位后與函數(shù)y=sinωx的圖象重合,則ω的值可能是( 。
A、
1
2
B、1
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=|x-3|+|x|+|x-5|+|x+7|+|x+4|,求此函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從高一年級學(xué)生中隨機抽取40名學(xué)生作為樣本,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:[40,50),[50,60),[90,100)后得到如圖的頻率分布直方圖.

(Ⅰ)求圖中實數(shù)a的值;
(Ⅱ)若該校高一年級共有學(xué)生500人,試估計該校高一年級在考試中成績不低于60分的人數(shù);
(Ⅲ)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學(xué)生中隨機選取兩名學(xué)生,試用列舉法求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,P是⊙O的直徑AB延長線上的一點,割線PCD交⊙O于C、D兩點,弦DF與直線AB垂直,H為垂足,CF與AB交于點E.
(1)求證:PA•PB=PO•PE;
(2)若DE⊥CF,∠P=15°,⊙O的半徑等于2,求弦CF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個相等的實數(shù)根,求f(x)的解析式;
(2)若不等式f(x)<0的解集為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校要從2名男同學(xué)和4名女同學(xué)中選出2人擔任羽毛球比賽的志愿者工作,每名同學(xué)當選的機會均相等.
(Ⅰ)求當選的2名同學(xué)中恰有l(wèi)名男同學(xué)的概率;
(Ⅱ)求當選的2名同學(xué)中至少有1名女同學(xué)的概率.

查看答案和解析>>

同步練習冊答案