(本小題滿分12分)
已知在四棱錐中,底面是邊長(zhǎng)為4的正方形,平面⊥平面,△是正三角形, 、、分別是、、的中點(diǎn).
(I)求證:平面;
(II)求平面與平面所成銳二面角的大小.
解:方法1:(I)證明:∵平面PAD⊥平面ABCD,,
∴平面PAD,
∵E、F為PA、PB的中點(diǎn),
∴EF//AB,∴EF平面PAD; …………(6分)
(II)解:過P作AD的垂線,垂足為O,
∵,則PO 平面ABCD.
取AO中點(diǎn)M,連OG,,EO,EM,
∵EF //AB//OG,
∴OG即為面EFG與面ABCD的交線…………(8分)
又EM//OP,則EM平面ABCD.且OGAO,
故OGEO ∴ 即為所求 …………(10分)
,EM=OM=1
∴tan=故 =
∴平面EFG與平面ABCD所成銳二面角的大小是 …………(12分)
方法2:(I)證明:過P作P O AD于O,∵,
則PO 平面ABCD,連OG,以O(shè)G,OD,OP為x、y、z軸建立空間坐標(biāo)系, ……(2分)
∵PA=PD ,∴,
得,
, …………(4分)
故,
∵,
∴EF 平面PAD; …………(6分)
(II)解:,
設(shè)平面EFG的一個(gè)法向量為
則, , …………(8分)
平面ABCD的一個(gè)法向量為……(10分)
平面EFG與平面ABCD所成銳二面角的余弦值是:
,銳二面角的大小是; …………(12分)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com