【題目】設數(shù)列{an}滿足當n>1時,an=,且a1=.
(1)求證:數(shù)列為等差數(shù)列;
(2)a1a2是否是數(shù)列{an}中的項?如果是,求出是第幾項;如果不是,請說明理由.
【答案】(1)見證明;(2) a1a2是數(shù)列{an}中的項,是第11項.
【解析】
(1)由題意得,數(shù)列{an}是非0數(shù)列,遞推關(guān)系式取倒數(shù),即可判斷是首項為5,公差為4的等差數(shù)列.
(2)求數(shù)列的通項公式,求出,令它等于通項,求出n的值即可得出結(jié)論.
(1)證明:根據(jù)題意a1=及遞推關(guān)系an≠0.因為an=.取倒數(shù)得+4,
即=4(n>1),所以數(shù)列是首項為5,公差為4的等差數(shù)列.
(2)解:由(1),得=5+4(n-1)=4n+1,.
又,解得n=11.
所以a1a2是數(shù)列{an}中的項,是第11項.
科目:高中數(shù)學 來源: 題型:
【題目】已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.
(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題p:實數(shù)x滿足,命題:實數(shù)x滿足
(1)若,且為真,求實數(shù)的取值范圍;
(2)若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,且(),設(),數(shù)列的前項和.
(1)求、、的值;
(2)利用“歸納—猜想—證明”求出的通項公式;
(3)求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校統(tǒng)計了本校高一年級學生期中考試的數(shù)學成績,其數(shù)學成績(滿分150分)均在內(nèi),將這些成績分成5組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)求該校高一年級學生期中考試的數(shù)學成績的中位數(shù)(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.
(Ⅰ)求證:CD⊥PD;
(Ⅱ)求證:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在點M,使CM∥平面PAB,若存在,確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標方程;
(2)設曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在學習函數(shù)時,我們經(jīng)歷了“確定函數(shù)的表達式利用函數(shù)圖象研究其性質(zhì)——運用函數(shù)解決問題“的學習過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學的函數(shù)圖象.同時,我們也學習過絕對值的意義.
結(jié)合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:
在函數(shù)中,當時,;當時,.
(1)求這個函數(shù)的表達式;
(2)在給出的平面直角坐標系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質(zhì);
(3)在圖中作出函數(shù)的圖象,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com