已知x+2y=6,求2x+4y的最小值.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:根據(jù)基本不等式的性質(zhì),有2x+4y2
2x4y
=2
2x+2y
,將已知條件x+2y=6代入可得答案.
解答: 解:根據(jù)基本不等式的性質(zhì),有
2x+4y≥2
2x4y
=2
2x+2y
=2
26
=16,
當(dāng)且僅當(dāng)2x=4y即x=2y=3時(shí)取等號(hào),
∴2x+4y的最小值為16.
點(diǎn)評(píng):本題考查基本不等式的性質(zhì),注意結(jié)合冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a,b,c分別是角A,B,C的對(duì)邊,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n
=0.
(1)求角B的大。
(2)若a=2,S△ABC=4
3
,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的中心在原點(diǎn)且經(jīng)過(guò)點(diǎn)D(2,0),
m1
=(2,1),
m2
=(2,-1)分別是兩條漸近線的方向向量.
(1)求雙曲線C的方程;
(2)橢圓
x2
4
+y2=1的左頂點(diǎn)為A,經(jīng)過(guò)B(-
6
5
,0)的直線?與橢圓交于M,N兩點(diǎn),試判斷
AM
AN
是否為定值,并證明你的結(jié)論.
(3)雙曲線C或拋物線y2=2px(p>0)是否也有類似(2)的結(jié)論?若是,請(qǐng)選擇一個(gè)曲線寫出類似結(jié)論(不要求書(shū)寫求解或證明過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,兩個(gè)函數(shù)f(x)=eax,g(x)=blnx的圖象關(guān)于直線y=x對(duì)稱.
(1)求實(shí)數(shù)a,b滿足的關(guān)系式;
(2)當(dāng)a取何值時(shí),函數(shù)h(x)=f(x)-g(x)有且只有一個(gè)零點(diǎn);
(3)當(dāng)a=1時(shí),在(
1
2
,+∞)上解不等式f(1-x)+g(x)<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校從參加今年自主招生考試的學(xué)生中,隨機(jī)抽取容量為50的學(xué)生成績(jī)樣本,得頻率分布表如下:
組號(hào) 分組 頻數(shù) 頻率
第一組 [230,235) 8 0.16
第二組 [235,240) 0.24
第三組 [240,245) 15
第四組 [245,250) 10 0.20
第五組 [250,255) 5 0.10
合計(jì) 50 1.00
(l)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三組、第四組、第五組中用分層抽樣法,抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、第四、第五各組參加考核的人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,其中有ξ名第三組的,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,公比為q,前m項(xiàng)和為Sm(Sm≠0),證明:Sm,S2m-Sm,S3m-S2m,…,Skm-S(k-1)m構(gòu)成公比為 q的m次冪的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若點(diǎn)F2關(guān)于直線y=
b
a
x的對(duì)稱點(diǎn)M也在雙曲線上,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=2,an+1=2-
1
an
(n=1,2,3,4…),求證:{
1
an-1
}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的直觀圖、正(主)視圖、側(cè)(左)視圖、俯視圖如圖,M、N分別為A1B、B1C1的中點(diǎn).

下列結(jié)論中正確的是
 
.(填上所有正確項(xiàng)的序號(hào))
①線MN與A1C 相交;②MN⊥BC;③MN∥平面ACC1A1;④三棱錐N-A1BC的體積為V N-A1BC=
1
6
a3

查看答案和解析>>

同步練習(xí)冊(cè)答案