橢圓上
x2
16
+
y2
9
=1
一點P到直線x+y+10=0的距離最小值為(  )
分析:設與直線x+y+10=0平行的直線方程為:x+y+c=0,與橢圓方程聯(lián)立,消元,令△=0,可得c的值,求出兩條平行線間的距離,即可求得橢圓上
x2
16
+
y2
9
=1
一點P到直線x+y+10=0的距離最小值.
解答:解:設與直線x+y+10=0平行的直線方程為:x+y+c=0,與橢圓方程聯(lián)立,消元可得25x2+32cx+16c2-144=0
令△=1024c2-100(16c2-144)=0,可得c=±15
∴兩條平行線間的距離為
|±15-10|
2
=
5
2
2
15
2
2

∴橢圓上
x2
16
+
y2
9
=1
一點P到直線x+y+10=0的距離最小值為
5
2
2

故選D.
點評:本題考查直線與橢圓的位置關系,解題的關鍵是求出與直線x+y+10=0平行,且與橢圓相切的直線方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且橢圓以拋物線y2=16x的焦點為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C,D分別為橢圓的上頂點和右頂點,點P是線段CD上的動點,求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點M,使△F1MF2的面積S=b2(其中a為橢圓的半長軸長,b為橢圓的半短軸長,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點),若存在,求tan∠F1MF2的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在O為坐標原點的直角坐標系中,點A(4,-3)為△OAB的直角頂點.已知|
AB
|=2|
OA
|
且點B的縱坐標大于零.
(1)求圓x2-6x+y2+2y=0關于直線OB對稱的圓的方程;
(2)設直線l平行于直線AB且過點(0,a),問是否存在實數(shù)a,使得橢圓
x2
16
+y2=1
上有兩個不同的點關于直線l對稱,若不存在,請說明理由;若存在,請求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線y2=16x的焦點P為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點Q為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C、D分別為橢圓的上頂點和右頂點,點M是線段CD上的動點,求
AM
BM
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在橢圓
x2
16
+
y2
9
=1
內(nèi),有一內(nèi)接三角形ABC,它的一邊BC與長軸重合,點A在橢圓上運動,則△ABC的重心的軌跡方程為
9x2
16
+y2=1
,y≠0
9x2
16
+y2=1
,y≠0

查看答案和解析>>

同步練習冊答案