20.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期及對(duì)稱中心;
(2)求函數(shù)f(x)的減區(qū)間及對(duì)稱軸;
(3)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

分析 (1)由三角函數(shù)中的恒等變換應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),由周期公式可求函數(shù)f(x)的最小正周期,由2x+$\frac{π}{4}$=kπ,k∈Z可解得函數(shù)的對(duì)稱中心.
(2)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{3π}{2}$,k∈Z可解得函數(shù)f(x)的減區(qū)間,由2x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,可解得函數(shù)f(x)的對(duì)稱軸.
(3)由x∈[-$\frac{π}{4}$,$\frac{π}{4}$],可得2x+$\frac{π}{4}$的范圍,可求得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)∈[-1,$\sqrt{2}$],即可解得函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

解答 解:(1)∵f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1
=sin2x+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π.
∴由2x+$\frac{π}{4}$=kπ,k∈Z可解得函數(shù)的對(duì)稱中心是:($\frac{kπ}{2}-\frac{π}{8}$,0),k∈Z,
(2)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{3π}{2}$,k∈Z可解得函數(shù)f(x)的減區(qū)間是:[kπ$+\frac{π}{8}$,k$π+\frac{5π}{8}$],k∈Z,
由2x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,可解得函數(shù)f(x)的對(duì)稱軸為:x=$\frac{kπ}{2}+\frac{π}{8}$,k∈Z,
(3)∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],
∴2x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$]
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)∈[-1,$\sqrt{2}$],
∴函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值是$\sqrt{2}$,最小值是-1.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,三角函數(shù)的圖象與性質(zhì),屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在正三棱柱中,AB=2,AA1=2,由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過(guò)棱AA1到頂點(diǎn)C1的最短路線與棱AA1的交點(diǎn)記為M,求:
(Ⅰ)三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng);
(Ⅱ)該最短路線的長(zhǎng)及$\frac{{{A_1}M}}{AM}$的值;
(Ⅲ)平面C1MB與平面ABC所成二面角(銳角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在直三棱柱ABC-A1B1C1中,∠ACB=90°,CA=CB=CC1=1,則直線A1B與平面BB1C1C所成角的正弦值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{5}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校開展校園文化活動(dòng),其中一項(xiàng)是背誦古詩(shī)100首,在該項(xiàng)進(jìn)行一段時(shí)間后,隨機(jī)抽取40人,統(tǒng)計(jì)調(diào)查了他們會(huì)背古詩(shī)的首數(shù),得到的數(shù)據(jù)如下:
20 21 22 23 24 24 25 26 26 27 28 29 29 29 30 30 30 31 31 31
32 32 33 34 35 35 36 36 37 38 38 38 40 40 41 42 42 43 46 48
(1)根據(jù)調(diào)查數(shù)據(jù)補(bǔ)全如下分組為[20,25),[25,30),…[40,45),[45,50)的頻率直方圖;

(2)從會(huì)背的古詩(shī)首數(shù)在區(qū)間[30,40)內(nèi)的同學(xué)中隨機(jī)抽取2人,求會(huì)背的古詩(shī)首數(shù)在區(qū)間[30,35),[35,40)內(nèi)各有一人的概率;
(3)從會(huì)背的古詩(shī)首數(shù)在區(qū)間[30,40)內(nèi)的同學(xué)中隨機(jī)抽取2人,求會(huì)背的古詩(shī)首數(shù)在區(qū)間[35,40)內(nèi)的人數(shù),ξ的概率分別列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.當(dāng)輸入的實(shí)數(shù)x∈[2,30]時(shí),執(zhí)行如圖所示的程序框圖,則輸出的x不小于103的概率是$\frac{9}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一個(gè)幾何體的三視圖(單位:m),則該幾何體的體積為44m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知正三棱錐P-ABC中,M、N分別是AB和AP的中點(diǎn),若MN⊥CN,則此正三棱錐的側(cè)面積與底面ABC的面積之比為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=logmx(m>0且m≠1),點(diǎn)(an,2n)在函數(shù)f(x)的圖象上.
(Ⅰ)若bn=an•f(an),當(dāng)m=$\frac{{\sqrt{3}}}{3}$時(shí),求數(shù)列{bn}的前n項(xiàng)和Sn
(Ⅱ)設(shè)cn=$\frac{a_n}{m^n}•lg\frac{a_n}{m^n}$,若數(shù)列{cn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)Sn是等差數(shù)列的前n項(xiàng)和,已知$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,則$\frac{{S}_{6}}{{S}_{12}}$=$\frac{3}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案