5.國際上通常采用恩格爾系數(shù)來衡量一個(gè)國家或地區(qū)人民生活水平的狀況,它的計(jì)算公式為n=$\frac{x}{y}$(其中x為人均食品支出總額,y為人均個(gè)人消費(fèi)支出總額).
各類型家庭生活水平按下表衡量:
家庭類型貧困溫飽小康富裕
nn≥59%50%≤n<59%40%≤n<50%30%≤n<40%
李先生居住地2004年比2000年食品價(jià)格下降了7.5%,在2004年他家食品的購買情況和2000年相差無幾的情況下,該項(xiàng)人均支出減少75元,假設(shè)2004年李先生家的人均食品支出總額x與人均個(gè)人消費(fèi)支出總額y的關(guān)系滿足y=2x+475,判斷該家庭2004年生活水平狀況.

分析 首先設(shè)出2000年人均食品消費(fèi),然后分別表示出2004年人均食品支出、2004年人均消費(fèi)支出.最后根據(jù)題意列出等式,求出未知數(shù)即可.

解答 解:設(shè)2000年人均食品消費(fèi)x元,
則2004年人均食品支出:x(1-7.5%)=92.5%x,
2004年人均消費(fèi)支出:2×92.5%x+475,
由題意,有:2×92.5%x+475+75=2x+475,解得:x=500,
此時(shí),x=$\frac{92.5%x}{2×92.5%x+475}$=$\frac{462.5}{1400}$≈0.3304=33.04%,
于是該家庭2004年生活水平狀況為富裕.

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知cos($α-\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,求sin($\frac{7}{4}$π-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.角α的正弦線、余弦線和正切線的數(shù)量分別為a、b、c,如果$\frac{5π}{4}$<α<$\frac{3π}{2}$,那么a、b、c的大小關(guān)系為(  )
A.a>b>cB.b>c>aC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知A={a|2kπ-$\frac{π}{6}$<a<2kπ+$\frac{π}{2}$,k∈Z},B={a|2kπ+$\frac{5π}{6}$<a<2kπ+$\frac{3π}{2}$,k∈Z},那么A∪B該如何表示?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,a1+a2+…+an-1=$\frac{1}{2}$an-2n-1+$\frac{1}{2}$(n∈N*
(1)設(shè)cn=$\frac{{a}_{n}}{{2}^{n}}$(n∈N+),求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=n(an+2n),求數(shù)列{bn}的n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知方程$\frac{{x}^{2}}{5m-6}$+$\frac{{y}^{2}}{m+2}$=1.求m的取值范圍:
(1)表示焦點(diǎn)在x軸上的橢圓:
(2)表示焦點(diǎn)在y軸上的橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在底面為平行四邊形的四棱柱ABCD-A1B1C1D1中,設(shè)M是上底面A1B1C1D1的中心.
(1)化簡$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{AB}$);
(2)若$\overrightarrow{BM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,求實(shí)數(shù)x,y,z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\sqrt{3x-1}$的定義域是{x|x$≥\frac{1}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知三棱錐P-ABC,PA⊥底面ABC,PA=AB=BC=2,直線PC與平面ABC所成的角為arctan$\frac{\sqrt{2}}{2}$.
(1)求證:BC⊥平面PAB;
(2)設(shè)E為線段PC中點(diǎn),求異面直線AE與BC所成的角的大小(結(jié)果用反三角函數(shù)值表示);
(3)設(shè)M是三棱錐P-ABC內(nèi)的動(dòng)點(diǎn)(包括邊界).滿足|AM|≤$\sqrt{2}$,求點(diǎn)M所形成的幾何體的全面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案