設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零.記S(m,n)為所有這樣的數(shù)表構(gòu)成的集合.
對于A∈S(m,n),記ri(A)為A的第i行各數(shù)之和(1≤i≤m),c,(A)為A的第j列各數(shù)之和(1≤j≤n);記k(A)為|r1(A)|,|r2(A|,…,|rm(A)|,|c1(A)|,|c2(A)|,…,|cn(A)|中的最小值.
(1)對如下數(shù)表A,求k(A)的值;
(2)設(shè)數(shù)表A∈S(2,3)形如
求k(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求k(A)的最大值.
解:(1)由題意可知,,,, ∴ (2)先用反證法證明: 若 則,∴ 同理可知,∴ 由題目所有數(shù)和為 即 ∴ 與題目條件矛盾 ∴. 易知當(dāng)時,存在 ∴的最大值為1 (3)的最大值為. 首先構(gòu)造滿足的: , . 經(jīng)計算知,中每個元素的絕對值都小于1,所有元素之和為0,且 , , . 下面證明是最大值.若不然,則存在一個數(shù)表,使得. 由的定義知的每一列兩個數(shù)之和的絕對值都不小于,而兩個絕對值不超過1的數(shù)的和,其絕對值不超過2,故的每一列兩個數(shù)之和的絕對值都在區(qū)間中.由于,故的每一列兩個數(shù)符號均與列和的符號相同,且絕對值均不小于. 設(shè)中有列的列和為正,有列的列和為負(fù),由對稱性不妨設(shè),則.另外,由對稱性不妨設(shè)的第一行行和為正,第二行行和為負(fù). 考慮的第一行,由前面結(jié)論知的第一行有不超過個正數(shù)和不少于個負(fù)數(shù),每個正數(shù)的絕對值不超過1(即每個正數(shù)均不超過1),每個負(fù)數(shù)的絕對值不小于(即每個負(fù)數(shù)均不超過).因此 , 故的第一行行和的絕對值小于,與假設(shè)矛盾.因此的最大值為. |
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 | 3 | -7 |
-2 | 1 | 0 | 1 |
a | a2-1 | -a | -a2 |
2-a | 1-a2 | a-2 | a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 1 | -0.8 |
0.1 | -0.3 | -1 |
1 | 1 | c |
a | b | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變該行(或該列)中所有數(shù)的符號,稱為一次“操作”.
(Ⅰ) 數(shù)表A如表1所示,若經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實數(shù),請寫出每次“操作”后所得的數(shù)表(寫出一種方法即可);
1 | 2 | 3 | ﹣7 |
﹣2 | 1 | 0 | 1 |
表1
(Ⅱ) 數(shù)表A如表2所示,若必須經(jīng)過兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)a的所有可能值;
a | a2﹣1 | ﹣a | ﹣a2 |
2﹣a | 1﹣a2 | a﹣2 | a2 |
表2
(Ⅲ)對由m×n個實數(shù)組成的m行n列的任意一個數(shù)表A,能否經(jīng)過有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設(shè).由題意得.又因為,所以,
于是,,
所以,當(dāng),且時,取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表如下,
… |
|||
… |
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且,因此,不妨設(shè),
且。
由得定義知,,
又因為
所以
所以,
對數(shù)表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
則且,
綜上,對于所有的,的最大值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com