【題目】三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠(yuǎn)。其中有一題:今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何? 譯文如下:要測量海島上一座山峰的高度,立兩根高均為丈的標(biāo)桿,前后標(biāo)桿相距步,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測到島峰,、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測到島峰,、三點(diǎn)也共線,問島峰的高度 步. (古制:=尺,===步)

【答案】1255

【解析】

試題分析:如圖,由題意步,設(shè)步,,,

,同理,由題意,即,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求不等式的解集;

2)若對一切,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.

(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

合計(jì)

(參考公式,其中.)

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.

下列命題:

①“囧函數(shù)”的值域?yàn)?/span>;

②“囧函數(shù)”在上單調(diào)遞增;

③“囧函數(shù)”的圖象關(guān)于軸對稱;

④“囧函數(shù)”有兩個(gè)零點(diǎn);

⑤“囧函數(shù)”的圖象與直線

至少有一個(gè)交點(diǎn).正確命題的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是塊矩形硬紙板其中AB=2AD,AD=,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B

1求證:AD平面BDE;

2求二面角B-AD-E的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且橢圓上一點(diǎn)到其兩焦點(diǎn),的距離之和為

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)直線與橢圓交于不同兩點(diǎn),,若點(diǎn)滿足,的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形均為菱形,,

1求證:平面;

2求證:平面;

3求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面 側(cè)面1, ,

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

同步練習(xí)冊答案