已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.
解析 (1)根據(jù)題意知,f′(x)=(x>0),
當(dāng)a>0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,1],單調(diào)遞減區(qū)間為(1,+∞);
當(dāng)a<0時(shí),f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1];當(dāng)a=0時(shí),f(x)不是單調(diào)函數(shù).
(2)∵f′(2)=-=1,∴a=-2,
∴f(x)=-2ln x+2x-3.
∴g(x)=x3+x2-2x,
∴g′(x)=3x2+(m+4)x-2.
∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=-2,
∴
由題意知:對(duì)于任意的t∈[1,2],g′(t)<0恒成立,
∴∴-<m<-9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若方程2a=|ax-1|(a>0,a≠1)有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿(mǎn)足f(x)=2xf′(1)+ln x,則f′(1)=( ).
A.-e B.-1 C.1 D.e
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)的定義域?yàn)镽,f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所 示,則( )
A.f(x)在x=1處取得極小值 B.f(x)在x=1處取得極大值
C.f(x)是R上的增函數(shù) D.f(x)是(-∞,1)上的減函數(shù),(1,+∞)上的增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)的自變量取值區(qū)間為A,若其值域也為A,則稱(chēng)區(qū)間A為f(x)的保值區(qū)間.若g(x)=x+m-lnx的保值區(qū)間是[2,+∞),則m的值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖在區(qū)域Ω={(x,y)|-2≤x≤2,0≤y≤4}中隨機(jī)撒900粒豆子,如果落在每個(gè)區(qū)域的豆子數(shù)與這個(gè)區(qū)域的面積近似成正比,試估計(jì)落在圖中陰影部分的豆子數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com