分析 (Ⅰ)由f(1)=1可得a=2b+1,再結(jié)合f(x)=2x成立的實數(shù)x只有一個解出a,b,從而求解析式;
(Ⅱ)由題意知an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$(n∈N*),bn=$\frac{1}{{a}_{n}}$-1;從而可得$\frac{_{n+1}}{_{n}}$=$\frac{\frac{1}{{a}_{n+1}}-1}{\frac{1}{{a}_{n}}-1}$=$\frac{1-{a}_{n}}{2(1-{a}_{n})}$=$\frac{1}{2}$,從而證明;
(Ⅲ)化簡anbn=1-$\frac{{2}^{n}}{{2}^{n}+1}$=$\frac{1}{{2}^{n}+1}$,從而利用放縮法證明即可.
解答 解:(Ⅰ)∵f(x)=$\frac{2bx}{ax-1}$,f(1)=1,
∴a=2b+1,
∵f(x)=2x成立的實數(shù)x只有一個,
即$\frac{2bx}{ax-1}$=2x,2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1,a=-1,
故f(x)=$\frac{2x}{x+1}$;
(Ⅱ)an+1=f(an)=$\frac{2{a}_{n}}{{a}_{n}+1}$(n∈N*),bn=$\frac{1}{{a}_{n}}$-1;
$\frac{_{n+1}}{_{n}}$=$\frac{\frac{1}{{a}_{n+1}}-1}{\frac{1}{{a}_{n}}-1}$=$\frac{1-{a}_{n}}{2(1-{a}_{n})}$=$\frac{1}{2}$,
∴數(shù)列{bn}是等比數(shù)列,
q=$\frac{1}{2}$,a1=$\frac{2}{3}$,b1=$\frac{3}{2}$-1=$\frac{1}{2}$,
故bn=$\frac{1}{{2}^{n}}$,
(Ⅲ)證明:∵anbn=an($\frac{1}{{a}_{n}}$-1)=1-$\frac{{2}^{n}}{{2}^{n}+1}$=$\frac{1}{{2}^{n}+1}$,
∴a1b1+a2b2+…+anbn
=$\frac{1}{2+1}$+$\frac{1}{{2}^{2}+1}$+…+$\frac{1}{{2}^{n}+1}$
<$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的應(yīng)用及放縮法的應(yīng)用,同時考查了函數(shù)的解析式的求法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x3(x∈(0,+∞)) | B. | f(x)=sinx | C. | f(x)=$\frac{lnx}{x}$ | D. | f(x)=x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={(\sqrt{x})^2}$ | B. | $y=\sqrt{x^2}$ | C. | $y=\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}\right.$ | D. | $y=\frac{x^2}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{25}$ | B. | $\frac{1}{5}$ | C. | 5 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com