(本題滿分14分)

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

(Ⅰ)求證:平面

(Ⅱ)求證:平面

(Ⅲ)求二面角的大。

(Ⅰ) 見解析(Ⅱ)見解析(Ⅲ)


解析:

(Ⅰ)連接,如圖,∵、分別是、的中點,是矩形,

∴四邊形是平行四邊形,∴.      ……………………………………………2分

平面,平面,

平面.………………………… 4分

(Ⅱ)連接,∵正方形的邊長為,,

,,

,∴.    ……………6分

∵在長方體中,,

,

平面,又平面,

,又

平面.                     ……………………………8分

(Ⅲ)在平面中過點,連結(jié),

,

平面,又平面,           ……………………9分

,又,且

平面,而平面,            ………………………………ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

10分

是二面角的平面角.             …………………………ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

12分

中,

,

∴二面角的大小為.          ………………………………………ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

14分

解法2(坐標法):(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、

又點,,

,且不共線,

平面,平面,

平面.                      …………………………………ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

4分

(Ⅱ)∵,

,即,,

,∴平面.   …………………………………………ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

8分

(Ⅲ)∵,,∴平面,

為平面的法向量.

,,

為平面的法向量.

,

的夾角為,即二面角的大小為.  ……………………………14分

(Ⅲ)(法三)設(shè)二面角的大小為,在平面內(nèi)的射影就是,根據(jù)射影面積公式可得,,

,∴二面角的大小為         …………ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

ks5u

14分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案