如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.
(1) 求點(diǎn)B的軌跡方程;
(2) 當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),求直線PQ的方程;
(3) 若G是圓C上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長(zhǎng)度是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
解:(1) 連結(jié)BF,由已知BF=BE,所以BC+BF=BC+BE=CE=4,
所以點(diǎn)B的軌跡是以C、F為焦點(diǎn),長(zhǎng)軸為4的橢圓,所以B點(diǎn)的軌跡方程為+=1.
(2) 當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),因?yàn)镈是線段EF的中點(diǎn),O為線段CF的中點(diǎn),所以CE∥OD,且CE=2OD,所以E、D的坐標(biāo)分別為(-1,4)和(0,2).
因?yàn)镻Q是線段EF的垂直平分線,所以直線PQ的方程為y=x+2,即直線PQ的方程為x-2y+4=0.
(3) 設(shè)點(diǎn)E、G的坐標(biāo)分別為(x1,y1)和(x2,y2),則點(diǎn)M的坐標(biāo)為,因?yàn)辄c(diǎn)E、G均在圓C上,且FG⊥FE,所以(x1+1)2+y=16,① (x2+1)2+y=16,②
(x1-1)(x2-1)+y1y2=0,③
所以x+y=15-2x1,x+y=15-2x2,x1x2+y1y2=x1+x2-1.所以MO2=[(x1+x2)2+(y1+y2)2]=·[(x+y)+(x+y)+2(x1x2+y1y2)]=[15-2x1+15-2x2+2(x1+x2-1)]=7,即M點(diǎn)到坐標(biāo)原點(diǎn)O的距離為定值,且定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平行移動(dòng) 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是____________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知角θ的終邊經(jīng)過(guò)點(diǎn)P(-x,-6),且cosθ=-,則sinθ=____________,tanθ=____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線方程是x2-=1,過(guò)定點(diǎn)P(2,1)作直線交雙曲線于P1、P2兩點(diǎn),并使P(2,1)為P1P2的中點(diǎn),則此直線方程是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,已知橢圓+=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過(guò)點(diǎn)T(t,m)的直線TA、TB與橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1) 設(shè)動(dòng)點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;
(2) 設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo);
(3) 設(shè)t=9,求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓+=1(a>b>0)的離心率為,短軸的一個(gè)端點(diǎn)為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.
(1) 若AB=,求k的值;
(2) 求證:不論k取何值,以AB為直徑的圓恒過(guò)點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,橢圓C:+=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過(guò)原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.
(1) 求橢圓C的方程;
(2) 求△ABP面積取最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C的方程為+=1(a>b>0),雙曲線-=1的兩條漸近線為l1、l2,過(guò)橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).
(1) 當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;
(2) 當(dāng)=λ,求λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且 (λ>0),定點(diǎn)A(-4,0).
(1) 求證:當(dāng)λ=1時(shí),;
(2) 若當(dāng)λ=1時(shí),有=,求橢圓C的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com