6666÷7的余數(shù)為
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:二項(xiàng)式定理
分析:由條件利用二項(xiàng)式定理,把6666÷7的余數(shù)化為366除以7的余數(shù),再化為233=(1+7)11 除以7的余數(shù),由此根據(jù)二項(xiàng)式定理把它展開,從而求得它除以7的余數(shù).
解答: 解:∵666 =(3+63)66=
C
0
66
366+
C
1
66
•365•63
+
C
2
66
•334•632+…+
C
66
66
•6366
由于展開式除了第一項(xiàng)外,其余的項(xiàng)都能倍7整除,故 6666÷7的余數(shù),就是展開式的第一項(xiàng)除以7的余數(shù),即366除以7的余數(shù).
又366=933=(2+7)33=
C
0
33
233+
C
1
33
•232•7+
C
2
33
•231•72+…+
C
33
33
•733,在此展開式中,除了第一項(xiàng)外,其余的項(xiàng)都能倍7整除,
故366除以7的余數(shù)就是233除以7的余數(shù).
又233=(1+7)11=
C
0
11
+
C
1
11
•7+
C
2
11
•72+…+
C
11
11
•711,在此展開式中,除了第一項(xiàng)外,其余的項(xiàng)都能倍7整除,
故233除以7的余數(shù)就是展開式的第一項(xiàng)
C
0
11
=1,
故答案為:1.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,函數(shù)f(x)=tanx在x=-
π
4
處與直線y=ax+b+
π
2
相切,設(shè)g(x)=-bxlnx+a在定義域內(nèi)( 。
A、有極大值
1
e
B、有極小值
1
e
C、有極大值2-
1
e
D、有極小值2-
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式 (x+1)(mx-1)>0,(m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(a,b)與點(diǎn)B(1,0)在直線3x-4y+10=0的兩側(cè),給出下列說法:
①3a-4b+10>0;  
a2+b2
>2;
③當(dāng)a>0時(shí),a+b有最小值,無最大值;
④當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
5
2
)∪(
3
4
,+∞).
其中正確的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+k(cosx-1).
(1)當(dāng)x∈[-
π
3
,
3
]時(shí),求函數(shù)f(x)的最小值,及f(x)取最小值時(shí)x的值;
(2)當(dāng)k=1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:存在x>1,使x2-1>0,那么?p是(  )
A、任意x>1,使x2-1>0
B、存在x>1,使x2-1≤0
C、任意x>1,使 x2-1≤0
D、存在x≤1,使 x2-1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列語句中是命題的有
 
,其中真命題的有
 

①“等邊三角形是等腰三角形”
②x<3
③(a-3)2<0(a∈R)
④一個(gè)數(shù)不是正數(shù)就是負(fù)數(shù)
⑤“大角所對的邊大于小角所對的邊”
⑥“x+y為有理數(shù),則xy也都是有理數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2xx≥0
-xx<0
,試求滿足不等式f[f(x)-3]>4的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1-x
,請說明函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案