已知直線l的方程是kx-y+2+3k=0(k∈R),則直線l必經(jīng)過點__________.

思路解析:對l的方程分離變量k得到k(x+3)-y+2=0,則當x+3=-y+2=0時,即x=-3,y=2時,此方程恒成立.所以此直線必經(jīng)過點(-3,2).

答案:(-3,2).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求右焦點坐標是(2,0),且經(jīng)過點( -2 , -
2
 )
的橢圓的標準方程;
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0).設(shè)斜率為k的直線l,交橢圓C于A、B兩點,AB的中點為M.證明:當直線l平行移動時,動點M在一條過原點的定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的方程是
x2
4
+y2=1
,雙曲線C2的左、右焦點分別為C1的左、右頂點,C2的左、右頂點分別為C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
2
與雙曲線C2恒有兩個不同的交點A,B,且
OA
OB
>2
(O為原點),求k的取值范圍;
(3)設(shè)P1,P2分別是C2的兩條漸近線上的點,點M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材標準學(xué)案 數(shù)學(xué) 高二上冊 題型:022

若已知直線l的斜率為k,與y軸的交點為P(0,b),代入直線方程的點斜式,可得:________,也就是________,則稱b為直線l在y軸上的________,這個方程是由直線l的________和它在y軸上的________確定的,所以叫做直線方程的________,它是點斜式方程的特殊情況,因此當直線l的傾斜角為________時,不能表示為斜截式方程,它的方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計必修二數(shù)學(xué)人教A版 人教A版 題型:022

已知直線l的方程是kx-y+2+3k=0(k∈R),則直線l必經(jīng)過點________.

查看答案和解析>>

同步練習冊答案