【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,直線交圓于,兩點(diǎn),過點(diǎn)作的平行線交于點(diǎn).
(1)證明為定值,并寫出點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與圓交于,兩點(diǎn),求四邊形面積的取值范圍.
【答案】(1)證明見解析,(2)
【解析】
(1)由,,故,所以,得到,化簡得,利用橢圓的定義,即可求解;
(2)設(shè)的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,結(jié)合弦長公式和三角形的面積公式,即可求解.
(1)因?yàn)?/span>,,故,
所以,故,
又圓的標(biāo)準(zhǔn)方程為,
從而,所以,
由題設(shè)得,,,
由橢圓定義可得點(diǎn)的軌跡方程為.
(2)當(dāng)與軸不垂直時,設(shè)的方程為,,,
由得,
則,,
所以,
過點(diǎn)且與垂直的直線,到的距離為,
所以,
故四邊形的面積,
可得當(dāng)與軸不垂直時,四邊形面積的取值范圍為,
當(dāng)與軸垂直時,其方程為,,四邊形的面積為,
綜上,四邊形面積的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段上的動點(diǎn),若線段長的最小值為,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,又,因此得平面,從而得證(2)先找到EH什么時候最短,顯然當(dāng)線段長的最小時, ,在中, , , ,∴,由中, , ,∴.然后建立空間直角坐標(biāo)系,寫出兩個面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形, ,
∴為正三角形.又為的中點(diǎn),∴.
又,因此.
∵平面, 平面,∴.
而平面, 平面且,
∴平面.又平面,∴.
(2)如圖, 為上任意一點(diǎn),連接, .
當(dāng)線段長的最小時, ,由(1)知,
∴平面, 平面,故.
在中, , , ,
∴,
由中, , ,∴.
由(1)知, , 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又, 分別是, 的中點(diǎn),
可得, , , ,
, , ,
所以, .
設(shè)平面的一法向量為,
則因此,
取,則,
因?yàn)?/span>, , ,所以平面,
故為平面的一法向量.又,
所以 .
易得二面角為銳角,故所求二面角的余弦值為.
【題型】解答題
【結(jié)束】
20
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓: 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).
(I)求橢圓的方程;
(II)如圖,若直線: 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)P是直線上的一動點(diǎn),過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)當(dāng)切線PA的長度為時,求點(diǎn)P的坐標(biāo);
(2)若的外接圓為圓N,試問:當(dāng)P運(yùn)動時,圓N是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)求線段AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,過點(diǎn)且不垂直于軸直線與橢圓相交于、兩點(diǎn)。
(1)求橢圓的方程;
(2)若點(diǎn)關(guān)于軸的對稱點(diǎn)是點(diǎn),證明:直線與軸相交于定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)數(shù)列滿足,其中.記的前項(xiàng)和為.是否存在正整數(shù),使得成立?若存在,請求出所有滿足條件的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為2的正方形,,且,為中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在點(diǎn),使得點(diǎn)到平
面的距離為?若存在,確定點(diǎn)的位置;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某鎮(zhèn)家庭抽樣調(diào)查的統(tǒng)計(jì),2003年每戶家庭平均消費(fèi)支出總額為1萬元,其中食品消費(fèi)額為0.6萬元.預(yù)測2003年后,每戶家庭平均消費(fèi)支出總額每年增加3000元,如果到2005年該鎮(zhèn)居民生活狀況能達(dá)到小康水平(即恩格爾系數(shù)n滿足),則這個鎮(zhèn)每戶食品消費(fèi)額平均每年的增長率至多是多少(精確到0.1%)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是具有下列性質(zhì)的函數(shù)的全體:存在實(shí)數(shù)對,使得對定義域內(nèi)任意實(shí)數(shù)x都成立.
(1)判斷函數(shù),是否屬于集合;
(2)若函數(shù)具有反函數(shù),是否存在相同的實(shí)數(shù)對,使得與同時屬于集合若存在,求出相應(yīng)的;若不存在,說明理由;
(3)若定義域?yàn)?/span>的函數(shù)屬于集合,且存在滿足有序?qū)崝?shù)對和;當(dāng)時,的值域?yàn)?/span>,求當(dāng)時函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com